Chinese Optics, Volume. 13, Issue 1, 121(2020)

Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna

MI Zhi1,2, CHEN Zhi-hui1,2, YANG Yi-biao2, FEI Hong-ming2, and LIU Xin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(29)

    [2] [2] JIANG X Y, FU H, ZHANG M, et al.. Molybdenum disulfide quantum dots-based fluorescence sensor for detection of doxycycline Hyclate[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1077-1083. (in Chinese)

    [3] [3] PARFENOV A, GRYCZYNSKI I, MALICKA J, et al.. Enhanced fluorescence from fluorophores on fractal silver surfaces[J]. The Journal of Physical Chemistry B, 2003, 107(34): 8829-8833.

    [4] [4] ZOU X B, SHI Y Q, ZHENG Y, et al.. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)

    [6] [6] ASLAN K, PREVITE M J R, ZHANG Y X, et al.. Metal-enhanced fluorescence from nanoparticulate zinc films[J]. The Journal of Physical Chemistry C, 2008, 112(47): 18368-18375.

    [7] [7] KOSAKO T, KADOYA Y, HOFMANN H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics, 2010, 4: 312-315.

    [8] [8] ANDERSEN S K H, BOGDANOV S, MAKAROVA O, et al.. Hybrid plasmonic bullseye antennas for efficient photon collection[J]. ACS Photonics, 2018, 5(3): 692-698.

    [9] [9] RUTCKAIA V, HEYROTH F, NOVIKOV A, et al.. Quantum dot emission driven by Mie resonances in silicon nanostructures[J]. Nano Letters, 2017, 17(11): 6886-6892.

    [10] [10] ALBELLA P, POYLI M A, SCHMIDT M K, et al.. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers[J]. The Journal of Physical Chemistry C, 2013, 117(26): 13573-13584.

    [11] [11] CAMBIASSO J, KNIG M, CORTS E, et al.. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J]. ACS Photonics, 2018, 5(4): 1546-1557.

    [12] [12] BOUCHET D, MIVELLE M, PROUST J, et al.. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas[J]. Physical Review Applied, 2016, 6(6): 064016.

    [13] [13] CALDAROLA M, ALBELLA P, CORTS E, et al.. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion[J]. Nature Communications, 2015, 6(1): 7915.

    [14] [14] REGMI R, BERTHELOT J, WINKLER P M, et al.. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules[J]. Nano Letters, 2016, 16(8): 5143-5151.

    [15] [15] GRARD D, DEVILEZ A, AOUANI H, et al.. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere[J]. Journal of the Optical Society of America B, 2009, 26(7): 1473-1478.

    [16] [16] YAN Y ZH, ZENG Y, WU Y, et al.. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 2014, 22(19): 23552-23564.

    [17] [17] SUN S, WU L, BAI P, et al.. Fluorescence enhancement in visible light: dielectric or noble metal?[J]. Physical Chemistry Chemical Physics, 2016, 18(28): 19324-19335.

    [19] [19] PAPASIMAKIS N, FEDOTOV V A, SAVINOV V, et al.. Electromagnetic toroidal excitations in matter and free space[J]. Nature Materials, 2016, 15(3): 263-271.

    [20] [20] LU G W, ZHANG T Y, LI W Q, et al.. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32): 15822-15828.

    [21] [21] CAI X SH, SHU M X, SHEN J Q, et al.. Particle Size Measurement Technology and Application[M]. Beijing: Chemical Industry Press, 2010. (in Chinese)

    [23] [23] CAMBIASSO J, GRINBLAT G, LI Y, et al.. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas[J]. Nano Letters, 2017, 17(2): 1219-1225.

    [24] [24] DEVILEZ A, STOUT B, BONOD N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J]. ACS Nano, 2010, 4(6): 3390-3396.

    [25] [25] JIAO X J, BLAIR S. Optical antenna design for fluorescence enhancement in the ultraviolet[J]. Optics Express, 2012, 20(28): 29909-29922.

    [26] [26] DAS G M, RINGNE A B, DANTHAM V R, et al.. Numerical investigations on photonic nanojet mediated surface enhanced raman scattering and fluorescence techniques[J]. Optics Express, 2017, 25(17): 19822-19831.

    [27] [27] PALIK E D. Handbook of Optical Constants of Solids[M]. San Diego: Academic Press, 1998.

    [28] [28] BAKKER R M, PERMYAKOV D, YU Y F, et al.. Magnetic and electric hotspots with silicon nanodimers[J]. Nano Letters, 2015, 15(3): 2137-2142.

    [29] [29] CHEN ZH G, TAFLOVE A, BACKMAN V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7): 1214-1220.

    Tools

    Get Citation

    Copy Citation Text

    MI Zhi, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna[J]. Chinese Optics, 2020, 13(1): 121

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 4, 2019

    Accepted: --

    Published Online: Mar. 9, 2020

    The Author Email:

    DOI:10.3788/co.20201301.0121

    Topics