NUCLEAR TECHNIQUES, Volume. 46, Issue 4, 040015(2023)
QCD phase transitions using the QCD Dyson-Schwinger equation approach
[1] Andronic A, Braun-Munzinger P, Redlich K et al. Decoding the phase structure of QCD via particle production at high energy[J]. Nature, 561, 321-330(2018).
[2] Edward S. Strongly coupled quark-gluon plasma in heavy ion collisions[J]. Reviews of Modern Physics, 89, 035001(2017).
[3] Stephanov M A. Non-Gaussian fluctuations near the QCD critical point[J]. Physical Review Letters, 102, 032301(2009).
[4] Roberts C D, Schmidt S M. Dyson-Schwinger equations: density, temperature and continuum strong QCD[J]. Progress in Particle and Nuclear Physics, 45, S1–S103(2000).
[5] Fukushima K, Sasaki C. The phase diagram of nuclear and quark matter at high baryon density[J]. Progress in Particle and Nuclear Physics, 72, 99-154(2013).
[6] Fischer C S. QCD at finite temperature and chemical potential from Dyson-Schwinger equations[J]. Progress in Particle and Nuclear Physics, 105, 1-60(2019).
[7] Dupuis N, Canet L, Eichhorn A et al. The nonperturbative functional renormalization group and its applications[J]. Physics Reports, 910, 1-114(2021).
[8] Adcox K, Adler S S, Afanasiev S et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration[J]. Nuclear Physics A, 757, 184-283(2005).
[9] Arsene I, Bearden I G, Beavis D et al. Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment[J]. Nuclear Physics A, 757, 1-27(2005).
[10] Adams J, Aggarwal M M, Ahammed Z et al. Experimental and theoretical challenges in the search for the quark-gluon plasma: the STAR Collaboration's critical assessment of the evidence from RHIC collisions[J]. Nuclear Physics A, 757, 102-183(2005).
[11] Boyanovsky D, De Vega H J, Schwarz D J. Phase transitions in the early and present universe[J]. Annual Review of Nuclear and Particle Science, 56, 441-500(2006).
[12] Gao F, Oldengott I M. Cosmology meets functional QCD: first-order cosmic QCD transition induced by large lepton asymmetries[J]. Physical Review Letters, 128, 131301(2022).
[14] Rajagopal K. Mapping the QCD phase diagram[J]. Nuclear Physics A, 661, 150-161(1999).
[15] Braun-Munzinger P, Wambach J. Colloquium: Phase diagram of strongly interacting matter[J]. Reviews of Modern Physics, 81, 1031-1050(2009).
[16] Fukushima K, Hatsuda T. The phase diagram of dense QCD[J]. Reports on Progress in Physics, 74, 014001(2011).
[17] Cheng M, Christ N H, Datta S et al. QCD equation of state with almost physical quark masses[J]. Physical Review D, 77, 014511(2008).
[18] Bazavov A, Bhattacharya T, Cheng M et al. Equation of state and QCD transition at finite temperature[J]. Physical Review D, 80, 014504(2009).
[19] Fischer C S, Luecker J. Propagators and phase structure of Nf=2 and Nf=2+1 QCD[J]. Physics Letters B, 718, 1036-1043(2013).
[20] McLerran L, Pisarski R D. Phases of dense quarks at large Nc[J]. Nuclear Physics A, 796, 83-100(2007).
[21] Qin S, Rischke D H. Quark spectral function and deconfinement at nonzero temperature[J]. Physical Review D, 88, 056007(2013).
[22] Karsch F, Kitazawa M. Quark propagator at finite temperature and finite momentum in quenched lattice QCD[J]. Physical Review D, 80, 056001(2009).
[23] Mueller J A, Fischer C S, Nickel D. Quark spectral properties above Tc from Dyson-Schwinger equations[J]. The European Physical Journal C, 70, 1037-1049(2010).
[24] Chen L F, Qin S X, Liu Y X. Flavor dependence of the thermal dissociations of vector and axial-vector mesons[J]. Physical Review D, 102, 054015(2020).
[25] Karsch F, Laermann E. Susceptibilities, the specific heat, and a cumulant in two-flavor QCD[J]. Physical Review D, Particles and Fields, 50, 6954-6962(1994).
[26] Hatsuda T, Kunihiro T. QCD phenomenology based on a chiral effective Lagrangian[J]. Physics Reports, 247, 221-367(1994).
[27] Fodor Z, Katz S D. A new method to study lattice QCD at finite temperature and chemical potential[J]. Physics Letters B, 534, 87-92(2002).
[28] de Forcrand P, Philipsen O. The QCD phase diagram for three degenerate flavors and small baryon density[J]. Nuclear Physics B, 673, 170-186(2003).
[29] Fodor Z, Katz S D. Critical point of QCD at finite T and μ, lattice results for physical quark masses[J]. Journal of High Energy Physics, 2004, 50(2004).
[30] D'Elia M, Lombardo M P. Finite density QCD via an imaginary chemical potential[J]. Physical Review D, 67, 014505(2003).
[31] Bernard C, Burch T, DeTar C et al. QCD thermodynamics with three flavors of improved staggered quarks[J]. Physical Review D, 71, 034504(2005).
[32] Aoki Y, Endrődi G, Fodor Z et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics[J]. Nature, 443, 675-678(2006).
[33] Aoki Y, Fodor Z, Katz S D et al. The QCD transition temperature: results with physical masses in the continuum limit[J]. Physics Letters B, 643, 46-54(2006).
[34] Gavai R V, Gupta S. On the critical end point of QCD[J]. Physical Review D, 71, 114014(2005).
[35] Gavai R V, Gupta S. QCD at finite chemical potential with six time slices[J]. Physical Review D, 78, 114503(2008).
[37] de Forcrand P, Philipsen O. Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential[J]. Physical Review Letters, 105, 152001(2010).
[38] Endrődi G, Fodor Z, Katz S D et al. The QCD phase diagram at nonzero quark density[J]. Journal of High Energy Physics, 2011, 1(2011).
[39] Kaczmarek O, Karsch F, Laermann E et al. Phase boundary for the chiral transition in (2+1)-flavor QCD at small values of the chemical potential[J]. Physical Review D - Particles, Fields, Gravitation and Cosmology, 83, 014504(2011).
[40] Li A, Alexandru A, Liu K F. Critical point of Nf= 3 QCD from lattice simulations in the canonical ensemble[J]. Physical Review D, 84, 071503(2011).
[41] Karsch F, Schaefer B J, Wagner M et al. Towards finite density QCD with Taylor expansions[J]. Physics Letters B, 698, 256-264(2011).
[42] Bhattacharya T, Buchoff M I, Christ N H et al. QCD phase transition with chiral quarks and physical quark masses[J]. Physical Review Letters, 113, 082001(2014).
[43] Cea P, Cosmai L, Papa A. Critical line of 2+1 flavor QCD[J]. Physical Review D, 89, 074512(2014).
[44] Gupta S, Karthik N, Majumdar P. On criticality and the equation of state of QCD at finite chemical potential[J]. Physical Review D, 90, 034001(2014).
[45] Bhattacharya T, Buchoff M I, Christ N H et al. QCD phase transition with chiral quarks and physical quark masses[J]. Physical Review Letters, 113, 082001(2014).
[46] Fischer C S, Mueller J A. Chiral and deconfinement transition from Dyson-Schwinger equations[J]. Physical Review D, 80, 074029(2009).
[47] Isserstedt P, Buballa M, Fischer C S et al. Baryon number fluctuations in the QCD phase diagram from Dyson-Schwinger equations[J]. Physical Review D, 100, 074011(2019).
[48] Fu W, Luo X, Pawlowski J M et al. Hyper-order baryon number fluctuations at finite temperature and density[J]. Physical Review D, 104, 094047(2021).
[49] He M, Hu F, Sun W M et al. Crossover from a continuum study of chiral susceptibility[J]. Physics Letters B, 675, 32-37(2009).
[50] Shi C, Wang Y L, Jiang Y et al. Locate QCD critical end point in a continuum model study[J]. Journal of High Energy Physics, 2014, 14(2014).
[51] Xu S S, Cui Z F, Wang B et al. Chiral phase transition with a chiral chemical potential in the framework of Dyson-Schwinger equations[J]. Physical Review D - Particles, Fields, Gravitation and Cosmology, 91, 056003(2015).
[52] Lu Y, Cui Z F, Pan Z et al. QCD phase diagram with a chiral chemical potential[J]. Physical Review D, 93, 074037(2016).
[53] Gutiérrez E, Ahmad A, Ayala A et al. The QCD phase diagram from Schwinger-Dyson equations[J]. Journal of Physics G: Nuclear and Particle Physics, 41, 075002(2014).
[54] Fischer C S, Luecker J, Welzbacher C A. Phase structure of three and four flavor QCD[J]. Physical Review D, 90, 034022(2014).
[55] Fischer C S, Luecker J, Welzbacher C A. Locating the critical end point of QCD[J]. Nuclear Physics A, 931, 774-779(2014).
[56] Gao F, Chen J, Liu Y X et al. Phase diagram and thermal properties of strong-interaction matter[J]. Physical Review D, 93, 094019(2016).
[57] Hatta Y, Stephanov M A. Proton-number fluctuation as a signal of the QCD critical end point[J]. Physical Review Letters, 91, 102003(2003).
[58] Ghosh S K, Mukherjee T K, Mustafa M G et al. Susceptibilities and speed of sound from the Polyakov-Nambu-Jona-Lasinio model[J]. Physical Review D, 73, 114007(2006).
[59] Schaefer B J, Pawlowski J M, Wambach J. Phase structure of the Polyakov-quark-meson model[J]. Physical Review D, 76, 074023(2007).
[60] Schaefer B J, Wagner M. Three-flavor chiral phase structure in hot and dense QCD matter[J]. Physical Review D, 79, 014018(2009).
[61] Sasaki C, Friman B, Redlich K. Susceptibilities and the phase structure of a chiral model with Polyakov loops[J]. Physical Review D, 75, 074013(2007).
[62] Fu W J, Zhang Z, Liu Y X. 2+1 Flavor Polyakov-Nambu-Jona-Lasinio model at finite temperature and nonzero chemical potential[J]. Physical Review D - Particles, Fields, Gravitation and Cosmology, 77, 014006(2008).
[63] Ciminale M, Gatto R, Ippolito N D et al. Three flavor Nambu-Jona-Lasinio model with Polyakov loop and competition with nuclear matter[J]. Physical Review D, 77, 054023(2008).
[64] Sasaki C, Friman B, Redlich K. Chiral phase transition in the presence of spinodal decomposition[J]. Physical Review D, 77, 034024(2008).
[65] Costa P, Ruivo M C, de Sousa C A. Thermodynamics and critical behavior in the Nambu-Jona-Lasinio model of QCD[J]. Physical Review D, 77, 096001(2008).
[66] Fukushima K. Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop[J]. Physical Review D, 77, 114028(2008).
[67] Abuki H, Anglani R, Gatto R et al. Chiral crossover, deconfinement, and quarkyonic matter within a Nambu-Jona-Lasinio model with the Polyakov loop[J]. Physical Review D, 78, 034034(2008).
[68] Mao H, Jin J S, Huang M. Phase diagram and thermodynamics of the Polyakov linear sigma model with three quark flavors[J]. Journal of Physics G: Nuclear and Particle Physics, 37, 035001(2010).
[69] Xin X Y, Qin S X, Liu Y X. Improvement on the Polyakov-Nambu-Jona-Lasinio model and the QCD phase transitions[J]. Physical Review D, 89, 094012(2014).
[70] Chen X, Li D N, Huang M. Criticality of QCD in a holographic QCD model with critical end point[J]. Chinese Physics C, 43, 023105(2019).
[72] Zhao Y, Chang L, Yuan W et al. Chiral susceptibility and chiral phase transition in Nambu-Jona-Lasinio model[J]. The European Physical Journal C, 56, 483-492(2008).
[73] Jiang L, Xin X, Wang K et al. Revisiting the phase diagram of the three-flavor quark system in the Nambu-Jona-Lasinio model[J]. Physical Review D, 88, 016008(2013).
[74] Bonati C, D'Elia M, Negro F et al. Curvature of the pseudocritical line in QCD: Taylor expansion matches analytic continuation[J]. Physical Review D, 98, 054510(2018).
[75] Bazavov A, Ding H T, Hegde P et al. Chiral crossover in QCD at zero and non-zero chemical potentials[J]. Physics Letters B, 795, 15-21(2019).
[76] Borsanyi S, Fodor Z, Guenther J N et al. QCD crossover at finite chemical potential from lattice simulations[J]. Physical Review Letters, 125, 052001(2020).
[78] de Forcrand P, Philipsen O. The QCD phase diagram for small densities from imaginary chemical potential[J]. Nuclear Physics B, 642, 290-306(2002).
[79] Borsanyi S, Endrődi G, Fodor Z et al. The QCD equation of state with dynamical quarks[J]. Journal of High Energy Physics, 2010, 1-33(2010).
[80] Bazavov A, Bhattacharya T, DeTar C et al. Equation of state in (2+1)-flavor QCD[J]. Physical Review D, 90, 094503(2014).
[81] de Forcrand P, Langelage J, Philipsen O et al. Lattice QCD phase diagram in and away from the strong coupling limit[J]. Physical Review Letters, 113, 152002(2014).
[82] Maris P, Roberts C D. Dyson-Schwinger equations: a tool for hadron physics[J]. International Journal of Modern Physics E, 12, 297-365(2003).
[83] Binosi D, Papavassiliou J. Pinch technique: theory and applications[J]. Physics Reports, 479, 1-152(2009).
[84] Eichmann G, Sanchis-Alepuz H, Williams R et al. Baryons as relativistic three-quark bound states[J]. Progress in Particle and Nuclear Physics, 91, 1(2016).
[85] Pawlowski J M. Aspects of the functional renormalisation group[J]. Annals of Physics, 322, 2831-2915(2007).
[86] Qin S X, Chang L, Chen H et al. Phase diagram and critical end point for strongly interacting quarks[J]. Physical Review Letters, 106, 172301(2011).
[87] Fu W J, Pawlowski J M, Rennecke F. QCD phase structure at finite temperature and density[J]. Physical Review D, 101, 054032(2020).
[88] Gao F, Pawlowski J M. QCD phase structure from functional methods[J]. Physical Review D, 102, 034027(2020).
[89] Gao F, Pawlowski J M. QCD phase structure from functional methods[J]. Physical Review D, 102, 034027(2020).
[90] Tang C, Gao F, Liu Y X. Practical scheme from QCD to phenomena via Dyson-Schwinger equations[J]. Physical Review D, 100, 056001(2019).
[91] Fischer C S, Williams R. Probing the gluon self-interaction in light mesons[J]. Physical Review Letters, 103, 122001(2009).
[92] Cyrol A K, Fister L, Mitter M et al. Landau gauge Yang-Mills correlation functions[J]. Physical Review D, 94, 054005(2016).
[93] Gao F, Papavassiliou J, Pawlowski J M. Fully coupled functional equations for the quark sector of QCD[J]. Physical Review D, 103, 094013(2021).
[94] Chang L, Liu Y X, Roberts C D. Dressed-quark anomalous magnetic moments[J]. Physical Review Letters, 106, 072001(2011).
[95] Qin S, Chang L, Liu Y et al. Practical corollaries of transverse Ward-Green-Takahashi identities[J]. Physics Letters B, 722, 384-388(2013).
[96] Gao F, Yamada M. Determining wave equations in holographic QCD from Wilsonian renormalization group[J]. Physical Review D, 106, 126003(2022).
[97] Binosi D, Mezrag C, Papavassiliou J et al. Process-independent strong running coupling[J]. Physical Review D, 96, 054026(2017).
[98] Deur A, Brodsky S J, de Téramond G F. The QCD running coupling[J]. Progress in Particle and Nuclear Physics, 90, 1-74(2016).
[99] Roberts C D, Williams A G. Dyson-Schwinger equations and their application to hadronic physics[J]. Progress in Particle and Nuclear Physics, 33, 477-575(1994).
[100] Chen L F, Bai Z, Gao F et al. New insight on the quark condensate beyond the chiral limit[J]. Physical Review D, 104, 094041(2021).
[101] Gao F, Liu Y X. QCD phase transitions via a refined truncation of Dyson-Schwinger equations[J]. Physical Review D, 94, 076009(2016).
[102] Xin X Y, Qin S X, Liu Y X. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach[J]. Physical Review D, 90, 076006(2014).
[103] Lu Y, Chen M Y, Bai Z et al. Chemical freeze-out parameters via a nonperturbative QCD approach[J]. Physical Review D, 105, 034012(2022).
Get Citation
Copy Citation Text
Fei GAO, Yuxin LIU. QCD phase transitions using the QCD Dyson-Schwinger equation approach[J]. NUCLEAR TECHNIQUES, 2023, 46(4): 040015
Category: Research Articles
Received: Apr. 4, 2023
Accepted: --
Published Online: Apr. 27, 2023
The Author Email: GAO Fei (fei.gao@bit.edu.cn)