Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 8, 1090(2024)

Image registration combining cross-scale point matching and multi-scale feature fusion

Zhuolin OU1, Xiaoqi LÜ1,2、*, and Yu GU1
Author Affiliations
  • 1School of Information Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China
  • 2School of Information Engineering,Inner Mongolia University of Technology,Hohhot 010051,China
  • show less
    Figures & Tables(14)
    Overall structure diagram of the registration network
    Structure diagram of cross-scale point matching combined with multi-scale feature fusion network
    Structure diagram of cross-scale point matching module
    Structure diagram of the multi-scale feature fusion module(a)and SCSE module(b)
    Illustrates of experimental data of three datasets
    Comparison of results from 5 registration methods on two datasets
    Visualization results of ablation experiments on two datasets
    Box plot of Dice values for 27 anatomical structures in the OASIS-3 dataset
    Bar chart of average Dice values for 27 anatomical structures in the ABIDE dataset
    • Table 1. Comparison of 5 registration methods on two different datasets(average±standard deviation)

      View table
      View in Article

      Table 1. Comparison of 5 registration methods on two different datasets(average±standard deviation)

      MethodOASIS-3LPBA40
      DiceASDDiceASD
      Affine0.481±0.0211.870±0.1100.594±0.0121.620±0.146
      SyN0.592±0.0141.230±0.0850.664±0.0111.220±0.098
      VoxelMorph0.707±0.0120.839±0.0620.640±0.0281.316±0.126
      CycleMorph0.695±0.0120.872±0.0600.629±0.0271.335±0.127
      CM-RegNet0.716±0.0120.796±0.0640.653±0.0271.270±0.113
    • Table 2. Comparison of the average registration time of 5 registration methods on two different datasets s

      View table
      View in Article

      Table 2. Comparison of the average registration time of 5 registration methods on two different datasets s

      MethodOASIS-3LPBA40
      Affine5.393.58
      SyN23.5015.69
      VoxelMorph0.150.14
      CycleMorph0.160.14
      CM-RegNet0.610.43
    • Table 3. Comparison of ablation experiment results of CM-RegNet model(average±standard deviation)

      View table
      View in Article

      Table 3. Comparison of ablation experiment results of CM-RegNet model(average±standard deviation)

      BaselineCPMMFFSCSEOASIS-3LPBA40
      0.707±0.0120.640±0.028
      0.709±0.0120.651±0.026
      0.709±0.0160.648±0.019
      0.713±0.0110.650±0.021
      0.716±0.0120.653±0.027
    • Table 4. Comparison of accuracy of several registration methods in five anatomical structures

      View table
      View in Article

      Table 4. Comparison of accuracy of several registration methods in five anatomical structures

      MethodAccuracy/%
      White MatterInf. Lat. Vent.Brain StemCSFVessel
      Affine59.814.977.640.59.6
      SyN65.713.885.651.02.9
      VoxelMorph83.147.491.769.328.4
      CycleMorph82.543.990.968.625.2
      CM-RegNet84.249.292.070.330.8
    • Table 5. Comparison of generalization results of several methods on ABIDE dataset(average±standard deviation)

      View table
      View in Article

      Table 5. Comparison of generalization results of several methods on ABIDE dataset(average±standard deviation)

      MethodDiceASD
      Affine0.462±0.0361.698±0.121
      SyN0.570±0.0201.054±0.074
      VoxelMorph0.564±0.1261.369±0.444
      CycleMorph0.546±0.1211.396±0.398
      CM-RegNet0.574±0.1321.301±0.369
    Tools

    Get Citation

    Copy Citation Text

    Zhuolin OU, Xiaoqi LÜ, Yu GU. Image registration combining cross-scale point matching and multi-scale feature fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(8): 1090

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Object Tracking and Recognition

    Received: Aug. 24, 2023

    Accepted: --

    Published Online: Sep. 27, 2024

    The Author Email: Xiaoqi LÜ (lxiaoqi@imut.edu.cn)

    DOI:10.37188/CJLCD.2023-0278

    Topics