Laser & Optoelectronics Progress, Volume. 55, Issue 1, 11502(2018)

Recognition of Empoasca Flavescens Based on Machine Vision

Chen Jing, Zhu Qibing*, Huang Min, and Zheng Yang
Author Affiliations
  • Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University,Wuxi, Jiangsu 214122, China
  • show less
    References(22)

    [6] Xu L F, Xu X B, Hu M et al. Corn leaf disease identification based on multiple classifiers fusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 31, 194-201(2015).

    [7] Ni J, Yao X, Tian Y C et al. Design and experiments of portable apparatus for plant growth monitoring and diagnosis[J]. Transactions of the Chinese Society of Agricultural Engineering, 29, 150-156(2013).

    [16] Zhou S G, Zhou A Y, Jin W et al. A fast DBSCAN algorithm[J]. Journal of Software, 11, 735-744(2000).

    [18] Vapnik V. Statistical learning theory[M]. New York: Wiley(1998).

    [22] Yi B H, Zhu J J, Li J. Imbalanced data classification on micro-credit company customer credit risk assessment using improved SMOTE support vector machine[J]. Chinese Journal of Management Science, 24, 24-30(2016).

    Tools

    Get Citation

    Copy Citation Text

    Chen Jing, Zhu Qibing, Huang Min, Zheng Yang. Recognition of Empoasca Flavescens Based on Machine Vision[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11502

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 17, 2017

    Accepted: --

    Published Online: Sep. 10, 2018

    The Author Email: Zhu Qibing (zhuqib@163.com)

    DOI:10.3788/LOP55.011502

    Topics