Chinese Journal of Lasers, Volume. 49, Issue 23, 2301004(2022)

Low Threshold and Highly Stable Femtosecond Optical Parametric Amplifier

Wen Zeng1,2, Bohan Li1,2、*, Huang Li1, and Zefeng Ren1,2、**
Author Affiliations
  • 1State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116650, Liaoning, China
  • 2University of Chinese Academy of Science, Beijing 100049, China
  • show less
    References(28)

    [1] Berera R, van Grondelle R, Kennis J T M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems[J]. Photosynthesis Research, 101, 105-118(2009).

    [2] Luo C W, Wang Y T, Yabushita A et al. Ultrabroadband time-resolved spectroscopy in novel types of condensed matter[J]. Optica, 3, 82-92(2016).

    [3] Zeng Q W, liu L, Hu S et al. Nonlinear propagation of intense femtosecond laser pulses in a foggy and cloudy environment[J]. Acta Optica Sinica, 40, 1519001(2020).

    [4] Theer P, Hasan M T, Denk W. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti: Al2O3 regenerative amplifier[J]. Optics Letters, 28, 1022-1024(2003).

    [5] Horton N G, Wang K, Kobat D et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 7, 205-209(2013).

    [6] Cerullo G, de Silvestri S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments, 74, 1-18(2003).

    [7] Shang Y P, Li X, Wang P et al. Polarized combination of mid-infrared optical parametric oscillator at 10 W levels[J]. Acta Optica Sinica, 36, 1019001(2016).

    [8] Adler F, Cossel K C, Thorpe M J et al. Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm[J]. Optics Letters, 34, 1330-1332(2009).

    [9] Tian W L, Wang Z H, Meng X H et al. High-power, widely tunable, green-pumped femtosecond BiB3O6 optical parametric oscillator[J]. Optics Letters, 41, 4851-4854(2016).

    [10] Hu M L, Wang J, Fan J T. Research progress on fiber laser-pumped femtosecond optical parametric oscillators[J]. Chinese Journal of Lasers, 48, 1901001(2021).

    [11] Fan J T, Hu M L, Gu C L et al. High power femtosecond green-pumped optical parametric oscillator based on lithium triborate[J]. Chinese Journal of Lasers, 41, 0902009(2014).

    [12] Antipenkov R, Varanavičius A, Zaukevičius A et al. Femtosecond Yb: KGW MOPA driven broadband NOPA as a frontend for TW few-cycle pulse systems[J]. Optics Express, 19, 3519-3524(2011).

    [13] Yin Y C, Li J, Ren X M et al. High-efficiency optical parametric chirped-pulse amplifier in BiB O6 for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7 μm[J]. Optics Letters, 41, 1142-1145(2016).

    [14] Rigaud P, van de Walle A, Hanna M et al. Supercontinuum-seeded few-cycle mid-infrared OPCPA system[J]. Optics Express, 24, 26494-26502(2016).

    [15] Riedel R, Stephanides A, Prandolini M J et al. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers[J]. Optics Letters, 39, 1422-1424(2014).

    [16] Brida D, Marangoni M, Manzoni C et al. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier[J]. Optics Letters, 33, 2901-2903(2008).

    [17] Mücke O D, Sidorov D, Dombi P et al. Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 microm[J]. Optics Letters, 34, 118-120(2009).

    [18] Silva F, Bates P K, Esteban-Martin A et al. High-average-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier[J]. Optics Letters, 37, 933-935(2012).

    [19] Tzeng Y W, Lin Y Y, Huang C H et al. Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser[J]. Optics Express, 17, 7304-7309(2009).

    [20] Krauth J, Steinmann A, Hegenbarth R et al. Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7 MHz Yb: KGW oscillator[J]. Optics Express, 21, 11516-11522(2013).

    [21] Hansel T, Köhler W, Assion A et al. NIR and MIR tunable 130 fs supercontinuum-seeded OPA with 25 nJ pulse energy and 5 MHz repetition rate[C](2013).

    [22] Cumberland B A, Travers J C, Popov S V et al. 29 W High power CW supercontinuum source[J]. Optics Express, 16, 5954-5962(2008).

    [23] Selivanov A G, Denisov I A, Kuleshov N V et al. Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals[J]. Applied Physics B, 83, 61-65(2006).

    [24] Bradler M, Baum P, Riedle E. Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses[J]. Applied Physics B, 97, 561-574(2009).

    [25] Coyle J C E, Kemp A J, Hopkins J M et al. Ultrafast diode-pumped Ti: sapphire laser with broad tunability[J]. Optics Express, 26, 6826-6832(2018).

    [26] Penwell S B, Whaley-Mayda L, Tokmakoff A. Single-stage MHz mid-IR OPA using LiGaS2 and a fiber laser pump source[J]. Optics Letters, 43, 1363-1366(2018).

    [27] Indra L, Batysta F, Hříbek P et al. Picosecond pulse generated supercontinuum as a stable seed for OPCPA[J]. Optics Letters, 42, 843-846(2017).

    [28] Hansel T, Köhler W, Assion A et al. NIR and MIR tunable 130 fs Supercontinuum-Seeded OPA with 25 nJ pulse energy and 5 MHz repetition rate[C](2013).

    Tools

    Get Citation

    Copy Citation Text

    Wen Zeng, Bohan Li, Huang Li, Zefeng Ren. Low Threshold and Highly Stable Femtosecond Optical Parametric Amplifier[J]. Chinese Journal of Lasers, 2022, 49(23): 2301004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jan. 11, 2022

    Accepted: Mar. 2, 2022

    Published Online: Oct. 31, 2022

    The Author Email: Li Bohan (bhli@dicp.ac.cn), Ren Zefeng (zfren@dicp.ac.cn)

    DOI:10.3788/CJL202249.2301004

    Topics