Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1865(2025)
Lithium Ion Synergistic Migration Effect of Layered and Spinel Cathode Materials
[1] [1] ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. J Power Sources, 2006, 160(2): 1349–1354.
[4] [4] WEI A J, MU J P, HE R, et al. Preparation of Li4Ti5O12/carbon nanotubes composites and LiCoO2/Li4Ti5O12 full-cell with enhanced electrochemical performance for high-power lithium-ion batteries[J]. J Phys Chem Solids, 2020, 138: 109303.
[5] [5] WU N T, ZHANG Y, GUO Y, et al. Flakelike LiCoO2 with exposed{010}facets as a stable cathode material for highly reversible lithium storage[J]. ACS Appl Mater Interfaces, 2016, 8(4): 2723–2731.
[6] [6] HIRANO A, KANNO R, KAWAMOTO Y, et al. Neutron diffraction study of the layered Li0.5−x–Ni1+x–O2[J]. Solid State Ion, 1996, 86: 791–796.
[7] [7] WAN Z J, JIANG X X, XU D W, et al. LiMn2O4 cathodes with F anion doping for superior performance of lithium-ion batteries[J]. Phys Chem Chem Phys, 2022, 24(36): 21638–21644.
[8] [8] HENKELMAN G, UBERUAGA B P, JNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000, 113(22): 9901–9904.
[9] [9] HENKELMAN G, JNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. 2000, 113(22): 9978–9985.
[10] [10] HAO S P, LI Y J, WANG S, et al. Achieving structural stability of LiCoO2 at high-voltage by gadolinium decoration[J]. Mater Today Energy, 2022, 25: 100980.
[11] [11] NING F H, LI S, XU B, et al. Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: A first principles study[J]. Solid State Ion, 2014, 263: 46–48.
[12] [12] NING F H, XU B, SHI J, et al. Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: A first-principles investigation[J]. J Phys Chem C, 2016, 120(33): 18428–18434.
[13] [13] KANG K, CEDER G. Factors that affect Li mobility in layered lithium transition metal oxides[J]. Phys Rev B, 2006, 74(9): 094105.
[14] [14] VAN DER VEN A, CEDER G. Lithium diffusion mechanisms in layered intercalation compounds[J]. J Power Sources, 2001, 97: 529–531.
[15] [15] FALLAHZADEH R, FARHADIAN N. Molecular dynamics simulation of lithium ion diffusion in LiCoO2 cathode material[J]. Solid State Ion, 2015, 280: 10–17.
[16] [16] VAN DER VEN A, CEDER G, ASTA M, et al. First-principles theory of ionic diffusion with nondilute carriers[J]. Phys Rev B, 2001, 64(18): 184307.
[17] [17] VAN DER VEN A. Lithium diffusion in layered LixCoO2[J]. Electrochem Solid-State Lett, 1999, 3(7): 301.
[18] [18] VAN DER VEN A, BHATTACHARYA J, BELAK A A. Understanding Li diffusion in Li-intercalation compounds[J]. Acc Chem Res, 2013, 46(5): 1216–1225.
[19] [19] ZHANG F C, DONG J Y, YI D, et al. Archimedean polyhedron LiCoO2 for ultrafast rechargeable Li-ion batteries[J]. Chem Eng J, 2021, 423: 130122.
[20] [20] ZHANG B K, LIN Z, DONG H F, et al. Revealing cooperative Li-ion migration in Li1+xAlxTi2−x(PO4)3 solid state electrolytes with high Al doping[J]. J Mater Chem A, 2020, 8(1): 342–348.
[21] [21] ZHANG B K, YANG L Y, WANG L W, et al. Cooperative transport enabling fast Li-ion diffusion in Thio-LISICON Li10SiP2S12 solid electrolyte[J]. Nano Energy, 2019, 62: 844–852.
[22] [22] HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nat Commun, 2017, 8: 15893.
[23] [23] LI X Y, GAO A, TANG Z X, et al. Robust surface reconstruction induced by subsurface Ni/Li antisites in Ni-rich cathodes[J]. Adv Funct Materials, 2021, 31(16): 2010291.
[24] [24] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758–1775.
[25] [25] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.
[26] [26] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.
[27] [27] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188–5192.
[28] [28] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.
[29] [29] ANISIMOV VI V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators: Hubbard U instead of stoner I[J]. Phys Rev B Condens Matter, 1991, 44(3): 943–954.
[30] [30] MORIWAKE H, KUWABARA A, FISHER C A J, et al. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material, LiCoO2[J]. Adv Mater, 2013, 25(4): 618–622.
[31] [31] MORADABADI A, KAGHAZCHI P. Mechanism of Li intercalation/deintercalation into/from the surface of LiCoO2[J]. Phys Chem Chem Phys, 2015, 17(35): 22917–22922.
[32] [32] GEORGE G, BROTONS-RUFES A, POATER A, et al. Unlocking the limitations of layered LiNiO2: Insights from DFT simulations on its viability as a cathode material for aqueous lithium-ion batteries[J]. J Power Sources, 2025, 625: 235650.
[33] [33] KHAN M J I, KANWAL Z, USMANI M N. Shift in optical properties of Mn doped CdS (a DFT+U study)[J]. Mater Res Express, 2018, 5(1): 015915.
[34] [34] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques forab initiototal-energy calculations: Molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4): 1045–1097.
[35] [35] JEONG E D, WON M S, SHIM Y B. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction[J]. J Power Sources, 1998, 70(1): 70–77.
[36] [36] XU B, QIAN D N, WANG Z Y, et al. Recent progress in cathode materials research for advanced lithium ion batteries[J]. Mater Sci Eng R Rep, 2012, 73(5/6): 51–65.
[37] [37] DAHN J R, VON SACKEN U, MICHAL C A. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure[J]. Solid State Ion, 1990, 44(1/2): 87–97.
[38] [38] ZHOU Z Z, CAZORLA C, GAO B, et al. First-principles study on the interplay of strain and state-of-charge with Li-ion diffusion in the battery cathode material LiCoO2[J]. ACS Appl Mater Interfaces, 2023, 15(46): 53614–53622.
[39] [39] TOMA T, MAEZONO R, HONGO K. Electrochemical properties and crystal structure of Li+/H+ cation-exchanged LiNiO2[J]. ACS Appl Energy Mater, 2020, 3(4): 4078–4087.
[40] [40] NING F H, WANG H W, XU B, et al. Jahn–Teller distortion affected Li ion migration in spinel TiO2[J]. Solid State Ion, 2017, 312: 17–20
Get Citation
Copy Citation Text
DAI Jingwen, NING Fanghua, GUO Yiming, WU Dongsen, SUN Zhuo, LIU Xiaoyu, YI Jin. Lithium Ion Synergistic Migration Effect of Layered and Spinel Cathode Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1865
Special Issue:
Received: Dec. 31, 2024
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: