Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1865(2025)

Lithium Ion Synergistic Migration Effect of Layered and Spinel Cathode Materials

DAI Jingwen, NING Fanghua, GUO Yiming, WU Dongsen, SUN Zhuo, LIU Xiaoyu, and YI Jin
Author Affiliations
  • Institute for Sustainable Energy & College of Sciences, Shanghai University, Shanghai 200444, China
  • show less
    References(38)

    [1] [1] ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. J Power Sources, 2006, 160(2): 1349–1354.

    [4] [4] WEI A J, MU J P, HE R, et al. Preparation of Li4Ti5O12/carbon nanotubes composites and LiCoO2/Li4Ti5O12 full-cell with enhanced electrochemical performance for high-power lithium-ion batteries[J]. J Phys Chem Solids, 2020, 138: 109303.

    [5] [5] WU N T, ZHANG Y, GUO Y, et al. Flakelike LiCoO2 with exposed{010}facets as a stable cathode material for highly reversible lithium storage[J]. ACS Appl Mater Interfaces, 2016, 8(4): 2723–2731.

    [6] [6] HIRANO A, KANNO R, KAWAMOTO Y, et al. Neutron diffraction study of the layered Li0.5−x–Ni1+x–O2[J]. Solid State Ion, 1996, 86: 791–796.

    [7] [7] WAN Z J, JIANG X X, XU D W, et al. LiMn2O4 cathodes with F anion doping for superior performance of lithium-ion batteries[J]. Phys Chem Chem Phys, 2022, 24(36): 21638–21644.

    [8] [8] HENKELMAN G, UBERUAGA B P, JNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000, 113(22): 9901–9904.

    [9] [9] HENKELMAN G, JNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. 2000, 113(22): 9978–9985.

    [10] [10] HAO S P, LI Y J, WANG S, et al. Achieving structural stability of LiCoO2 at high-voltage by gadolinium decoration[J]. Mater Today Energy, 2022, 25: 100980.

    [11] [11] NING F H, LI S, XU B, et al. Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: A first principles study[J]. Solid State Ion, 2014, 263: 46–48.

    [12] [12] NING F H, XU B, SHI J, et al. Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: A first-principles investigation[J]. J Phys Chem C, 2016, 120(33): 18428–18434.

    [13] [13] KANG K, CEDER G. Factors that affect Li mobility in layered lithium transition metal oxides[J]. Phys Rev B, 2006, 74(9): 094105.

    [14] [14] VAN DER VEN A, CEDER G. Lithium diffusion mechanisms in layered intercalation compounds[J]. J Power Sources, 2001, 97: 529–531.

    [15] [15] FALLAHZADEH R, FARHADIAN N. Molecular dynamics simulation of lithium ion diffusion in LiCoO2 cathode material[J]. Solid State Ion, 2015, 280: 10–17.

    [16] [16] VAN DER VEN A, CEDER G, ASTA M, et al. First-principles theory of ionic diffusion with nondilute carriers[J]. Phys Rev B, 2001, 64(18): 184307.

    [17] [17] VAN DER VEN A. Lithium diffusion in layered LixCoO2[J]. Electrochem Solid-State Lett, 1999, 3(7): 301.

    [18] [18] VAN DER VEN A, BHATTACHARYA J, BELAK A A. Understanding Li diffusion in Li-intercalation compounds[J]. Acc Chem Res, 2013, 46(5): 1216–1225.

    [19] [19] ZHANG F C, DONG J Y, YI D, et al. Archimedean polyhedron LiCoO2 for ultrafast rechargeable Li-ion batteries[J]. Chem Eng J, 2021, 423: 130122.

    [20] [20] ZHANG B K, LIN Z, DONG H F, et al. Revealing cooperative Li-ion migration in Li1+xAlxTi2−x(PO4)3 solid state electrolytes with high Al doping[J]. J Mater Chem A, 2020, 8(1): 342–348.

    [21] [21] ZHANG B K, YANG L Y, WANG L W, et al. Cooperative transport enabling fast Li-ion diffusion in Thio-LISICON Li10SiP2S12 solid electrolyte[J]. Nano Energy, 2019, 62: 844–852.

    [22] [22] HE X F, ZHU Y Z, MO Y F. Origin of fast ion diffusion in super-ionic conductors[J]. Nat Commun, 2017, 8: 15893.

    [23] [23] LI X Y, GAO A, TANG Z X, et al. Robust surface reconstruction induced by subsurface Ni/Li antisites in Ni-rich cathodes[J]. Adv Funct Materials, 2021, 31(16): 2010291.

    [24] [24] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758–1775.

    [25] [25] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.

    [26] [26] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.

    [27] [27] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188–5192.

    [28] [28] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.

    [29] [29] ANISIMOV VI V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators: Hubbard U instead of stoner I[J]. Phys Rev B Condens Matter, 1991, 44(3): 943–954.

    [30] [30] MORIWAKE H, KUWABARA A, FISHER C A J, et al. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material, LiCoO2[J]. Adv Mater, 2013, 25(4): 618–622.

    [31] [31] MORADABADI A, KAGHAZCHI P. Mechanism of Li intercalation/deintercalation into/from the surface of LiCoO2[J]. Phys Chem Chem Phys, 2015, 17(35): 22917–22922.

    [32] [32] GEORGE G, BROTONS-RUFES A, POATER A, et al. Unlocking the limitations of layered LiNiO2: Insights from DFT simulations on its viability as a cathode material for aqueous lithium-ion batteries[J]. J Power Sources, 2025, 625: 235650.

    [33] [33] KHAN M J I, KANWAL Z, USMANI M N. Shift in optical properties of Mn doped CdS (a DFT+U study)[J]. Mater Res Express, 2018, 5(1): 015915.

    [34] [34] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques forab initiototal-energy calculations: Molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4): 1045–1097.

    [35] [35] JEONG E D, WON M S, SHIM Y B. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction[J]. J Power Sources, 1998, 70(1): 70–77.

    [36] [36] XU B, QIAN D N, WANG Z Y, et al. Recent progress in cathode materials research for advanced lithium ion batteries[J]. Mater Sci Eng R Rep, 2012, 73(5/6): 51–65.

    [37] [37] DAHN J R, VON SACKEN U, MICHAL C A. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure[J]. Solid State Ion, 1990, 44(1/2): 87–97.

    [38] [38] ZHOU Z Z, CAZORLA C, GAO B, et al. First-principles study on the interplay of strain and state-of-charge with Li-ion diffusion in the battery cathode material LiCoO2[J]. ACS Appl Mater Interfaces, 2023, 15(46): 53614–53622.

    [39] [39] TOMA T, MAEZONO R, HONGO K. Electrochemical properties and crystal structure of Li+/H+ cation-exchanged LiNiO2[J]. ACS Appl Energy Mater, 2020, 3(4): 4078–4087.

    [40] [40] NING F H, WANG H W, XU B, et al. Jahn–Teller distortion affected Li ion migration in spinel TiO2[J]. Solid State Ion, 2017, 312: 17–20

    Tools

    Get Citation

    Copy Citation Text

    DAI Jingwen, NING Fanghua, GUO Yiming, WU Dongsen, SUN Zhuo, LIU Xiaoyu, YI Jin. Lithium Ion Synergistic Migration Effect of Layered and Spinel Cathode Materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1865

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 31, 2024

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240856

    Topics