Laser & Optoelectronics Progress, Volume. 58, Issue 24, 2428006(2021)

Building Extraction from Remote Sensing Imagery Based on Scale-Adaptive Fully Convolutional Network

Fan Feng1, Shuangting Wang1, Jin Zhang1, Chunyang Wang1、*, and Bing Liu2
Author Affiliations
  • 1School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • 2PLA Strategic Support Force Information Engineering University, Zhengzhou, Henan 450001, China
  • show less
    Figures & Tables(15)
    Flow chart of building extraction based on SA-Net
    Schematic diagram of the SA-Net
    Schematic diagram of the RSPP
    Schematic diagram of the AFR module
    Two sets of example images. (a) WHU dataset; (b) Massachusetts dataset
    Diagram of the overlap strategy
    Segmentation results of WHU dataset by different models. (a) Image; (b) label; (c) U-Net; (d) MultiResUNet; (e) Res-UNet; (f) S-UNet; (g) USPP; (h) SA-Net
    Segmentation results of the Massachusetts dataset by different models. (a) Image; (b) label; (c) U-Net; (d) MultiResUNet; (e) Res-UNet; (f) S-UNet; (g) USPP; (h) SA-Net
    • Table 1. Number of parameters and the maximum number of batches of different models

      View table

      Table 1. Number of parameters and the maximum number of batches of different models

      ModelU-NetUSPPS-UNetRes-UNetSA-NetMultiResUNet
      Parameter number /1067.764.827.974.737.137.26
      Max batch size37222319256
    • Table 2. Random sampling training and regular training results of different models in the WHU dataset

      View table

      Table 2. Random sampling training and regular training results of different models in the WHU dataset

      ModelBatch sizeImage size(pixel×pixel)Graphic cardVideo memory /GIOU /%
      U-Net (random cropping training)16256×256RTX 2070888.58
      U-Net (Ref. [15])8512×512Nvidia P60002484.08
      U-Net (Ref. [4])6512×512Nvidia Titan XP1286.80
    • Table 3. Experimental settings of WHU ariel dataset and Massachusetts dataset

      View table

      Table 3. Experimental settings of WHU ariel dataset and Massachusetts dataset

      ParameterWHU ariel datasetMassachusetts dataset
      Training image number (size)4736 (512 pixel×512 pixel)8631 (512 pixel×512 pixel)
      Validation image number (size)4144 (256 pixel×256 pixel)144 (256 pixel×256 pixel)
      Training epoch300200
      Steps per epoch296540
      Batch size16(6 for MultiResUNet)16(6 for MultiResUNet)
      Iteration number296×300540×200
      Padding size064
    • Table 4. Quantitative evaluation results of different models on the WHU and Massachusetts datasets unit: %

      View table

      Table 4. Quantitative evaluation results of different models on the WHU and Massachusetts datasets unit: %

      DatasetModelPrecisionRecallIOUF1 score
      WHUU-Net94.3793.5288.5893.94
      USPP94.5094.3589.4494.42
      MultiResUNet97.0090.0187.5793.37
      S-UNet (Ref. [14])95.2093.0088.8094.09
      SR-FCN (Ref. [4])94.4093.9088.9094.15
      S-UNet94.7493.7789.1494.25
      DeepLab V3+ (Ref. [4])91.6094.6087.1093.08
      Res-UNet92.7193.9087.4493.30
      SA-Net95.2793.8089.6294.53
      MassachusettsU-Net85.8481.1871.6083.44
      MultiResUNet93.2266.8463.7477.86
      USPP88.5079.3771.9583.69
      S-UNet86.0581.5071.9983.71
      Res-UNet87.0877.6669.6482.10
      Res-UNet (Ref. [11])86.2180.2671.1483.13
      JointNet (Ref. [11])86.2181.2971.9983.68
      SA-Net86.7882.7073.4584.69
    • Table 5. Training time of different models on the WHU dataset unit: h

      View table

      Table 5. Training time of different models on the WHU dataset unit: h

      ModelU-NetUSPPS-UNetRes-UNetSA-NetMultiResUNet
      Training time10.711.812.813.413.335.1
    • Table 6. Evaluation results of ablation experiments unit: %

      View table

      Table 6. Evaluation results of ablation experiments unit: %

      DatasetIndexU-Net (base-line)MIMORSPPAFRIOUF1 score
      WHU1Ö88.5893.94
      2ÖÖ89.3794.38
      3ÖÖÖ89.6794.55
      4ÖÖÖÖ89.6294.53
      Massachusetts1Ö71.6083.44
      2ÖÖ73.0284.41
      3ÖÖÖ73.0684.44
      4ÖÖÖÖ73.4584.69
    • Table 7. Experimental results of small sample conditions unit: %

      View table

      Table 7. Experimental results of small sample conditions unit: %

      DatasetModelPrecisionRecallIOUF1 score
      WHUU-Net83.0385.8773.0584.43
      USPP87.4286.6077.0087.01
      S-UNet87.1186.6476.8086.87
      SA-Net88.9286.2377.8687.55
      MassachusettsU-Net86.3073.4665.7979.36
      USPP86.6475.7967.8680.85
      S-UNet84.5679.2169.2081.80
      SA-Net87.4979.2871.2183.18
    Tools

    Get Citation

    Copy Citation Text

    Fan Feng, Shuangting Wang, Jin Zhang, Chunyang Wang, Bing Liu. Building Extraction from Remote Sensing Imagery Based on Scale-Adaptive Fully Convolutional Network[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2428006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 6, 2021

    Accepted: Jan. 20, 2021

    Published Online: Dec. 3, 2021

    The Author Email: Chunyang Wang (wcy@hpu.edu.cn)

    DOI:10.3788/LOP202158.2428006

    Topics