Chinese Journal of Lasers, Volume. 44, Issue 7, 703008(2017)

Low-Dimensional Metal Halide Perovskites: a Kind of Microcavity Laser Materials

Huo Chengxue*, Wang Ziming, Li Xiaoming, and Zeng Haibo
Author Affiliations
  • [in Chinese]
  • show less
    References(79)

    [1] [1] Zener C. Interaction between the d shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure[J]. Physical Review, 1951, 81(3): 440-444.

    [2] [2] Maeno Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite without copper[J]. Nature, 1994, 372(6506): 532-534.

    [3] [3] Mitzi D B, Feild C A, Harrison W T A, et al. Conducting tin halides with a layered organic-based perovskite structure[J]. Nature, 1994, 369(6480): 467-469.

    [4] [4] Jonker G H, van Santen J H. Ferromagnetic compounds of manganese with perovskite structure[J]. Physica, 1950, 16(3): 337-349.

    [5] [5] Chiang C H, Tseng Z L, Wu C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process[J]. Journal of Materials Chemistry A, 2014, 2(38): 15897-15903.

    [6] [6] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

    [7] [7] Mitzi D B, Chondroudis K, Kagan C R. Organic-inorganic electronics[J]. IBM Journal of Research and Development, 2001, 45(1): 29-45.

    [8] [8] Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.

    [9] [9] Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398.

    [10] [10] Burschka J, Pellet N, Moon S-J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.

    [11] [11] Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7: 486-491.

    [12] [12] Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344.

    [13] [13] D′Innocenzo V, Grancini G, Alcocer M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nature Communications, 2014, 5(4): 3586.

    [14] [14] Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167.

    [15] [15] Ling Y, Yuan Z, Tian Y, et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets[J]. Advanced Materials, 2016, 28(2): 305-311.

    [16] [16] Ha S T, Shen C, Zhang J, et al. Laser cooling of organic-inorganic lead halide perovskites[J]. Nature Photonics, 2016, 10: 115-121.

    [17] [17] Li X, Wu Y, Zhang S, et al. Quantum dots: CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15): 2584.

    [18] [18] Li X, Yu D, Cao F, et al. Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability[J]. Advanced Functional Materials, 2016, 26(32): 5903-5912.

    [19] [19] Song J, Xu L, Li J, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 2016, 28(24): 4861-4869.

    [20] [20] Zhao J, Bardecker J A, Munro A M, et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer[J]. Nano Letters, 2006, 6(3): 463-467.

    [21] [21] Caruge J, Halpert J, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2008, 2: 247-250.

    [22] [22] Anikeeva P O, Halpert J E, Bawendi M G, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum[J]. Nano Letters, 2009, 9(7): 2532-2536.

    [23] [23] Sun Q, Wang Y A, Li L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nature Photonics, 2007, 1: 717-722.

    [24] [24] Tyagi P, Arveson S M, Tisdale W A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement[J]. The Journal of Physical Chemistry Letters, 2015, 6(10): 1911-1916.

    [25] [25] Sichert J A, Tong Y, Mutz N, et al. Quantum size effect in organometal halide perovskite nanoplatelets[J]. Nano Letters, 2015, 15(10): 6521-6527.

    [26] [26] Dou L, Wong A B, Yu Y, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites[J]. Science, 2015, 349(6255): 1518-1521.

    [27] [27] Bekenstein Y, Koscher B A, Eaton S W, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies[J]. Journal of the American Chemical Society, 2015, 137(51): 16008-16011.

    [28] [28] Akkerman Q A, Motti S G, Srimath K A R, et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control[J]. Journal of the American Chemical Society, 2016, 138(3): 1010-1016.

    [29] [29] Wang K H, Wu L, Li L, et al. Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange[J]. Angewandte Chemie, 2016, 55(29): 8328-8332.

    [30] [30] Wang Y, Guan X, Li D, et al. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications[J]. Nano Research, 2016(10): 1223.

    [31] [31] Eaton S W, Lai M, Gibson N A, et al. Lasing in robust cesium lead halide perovskite nanowires[C]. Proceedings of the National Academy of Sciences, 2016, 113(8): 1993-1998.

    [32] [32] Zhang Q, Su R, Liu X, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 2016, 26(34): 6238-6245.

    [33] [33] Noel N K, Stranks S D, Abate A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7(9): 3061-3068.

    [34] [34] Hao F, Stoumpos C C, Cao D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8: 489-494.

    [35] [35] Grtzel M. The light and shade of perovskite solar cells[J]. Nature materials, 2014, 13(9): 838-842.

    [36] [36] Yakunin S, Protesescu L, Krieg F, et al. Erratum: Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8515.

    [37] [37] Wu K, Yang Z, Pan S. Na4MgM2Se6 (M=Si, Ge): The first noncentrosymmetric compounds with special ethane-like[M2Se6]6- units exhibiting large laser-damage thresholds[J]. Inorganic Chemistry, 2015, 54(21): 10108-10110.

    [38] [38] Liu X C, Hong R, Tian C. Tolerance factor and the stability discussion of ABO3-type ilmenite[J]. Journal of Materials Science: Materials in Electronics, 2008, 20(4): 323-327.

    [39] [39] Niu L, Zeng Q, Shi J, et al. Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal[J]. Advanced Functional Materials, 2016, 26(29): 5263-5270.

    [40] [40] Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional ruddlesden-popper perovskite solar cells[J]. Nature, 2016, 536(7616): 312-316.

    [41] [41] Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309): 206.

    [42] [42] Liu W, Lin Q, Li H, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45): 14954-14961.

    [43] [43] Cremers D A, Knight A K. Laser-induced breakdown spectroscopy[M]. Hoboken: Wiley Online Library, 2006.

    [44] [44] Nakamura S, Pearton S, Fasol G. The blue laser diode: The complete story[M]. Berlin: Springer-Verlag, 2000.

    [45] [45] Townes C H. Obituary: Theodore H. Maiman (1927-2007)[J]. Nature, 2007, 447(7145): 654.

    [46] [46] Narukawa Y, Kawakami Y, Funato M, et al. Role of self-formed ingan quantum dots for exciton localization in the purple laser diode emitting at 420 nm[J]. Applied Physics Letters, 1997, 70(8): 981-983.

    [47] [47] Balle T, Flygare W. Fabry-perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source[J]. Review of Scientific Instruments, 1981, 52(1): 33-45.

    [48] [48] Liang W, Bockrath M, Bozovic D, et al. Fabry-Perot interference in a nanotube electron waveguide[J]. Nature, 2001, 411(6838): 665-669.

    [49] [49] Mc Call S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers[J]. Applied Physics Letters, 1992, 60(3): 289-291.

    [50] [50] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 1989, 137(7): 393-397.

    [51] [51] Arnold S, Khoshsima M, Teraoka I, et al. Shift of whispering-gallery modes in microspheres by protein adsorption[J]. Optics Letters, 2003, 28(4): 272-274.

    [52] [52] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899.

    [53] [53] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259): 1110-1112.

    [54] [54] Zhou H, Wissinger M, Fallert J, et al. Ordered, uniform-sized ZnO nanolaser arrays[J]. Applied Physics Letters, 2007, 91(18): 181112.

    [55] [55] Sarychev A K, Tartakovsky G. Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser[J]. Physical Review B, 2007, 75(8): 63200A.

    [56] [56] Lee J H, Ko Y C, Kong D H, et al. Design and fabrication of scanning mirror for laser display[J]. Sensors and Actuators A: Physical, 2002, 96(2-3): 223-230.

    [57] [57] Ko Y C, Cho J W, Mun Y K, et al. Eye-type scanning mirror with dual vertical combs for laser display[J]. Sensors and Actuators A: Physical, 2006, 126(1): 218-226.

    [58] [58] Qian F, Li Y, Gradecak S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers[J]. Nature Materials, 2008, 7(9): 701-706.

    [59] [59] Pan A, Zhou W, Leong ESP, et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip[J]. Nano Letters, 2009, 9(2): 784-788.

    [60] [60] Saxena D, Mokkapati S, Parkinson P, et al. Optically pumped room-temperature gaas nanowire lasers[J]. Nature Photonics, 2013, 7: 963-968.

    [61] [61] Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6): 636-642.

    [62] [62] Mayer B, Rudolph D, Schnell J, et al. Lasing from individual gaas-algaas core-shell nanowires up to room temperature[J]. Nature Communications, 2013, 4(1): 2931.

    [63] [63] Xing J, Liu X F, Zhang Q, et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 2015, 15(7): 4571-4577.

    [64] [64] Fu Y, Zhu H, Schrader A W, et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability[J]. Nano Letters, 2016, 16(2): 1000-1008.

    [65] [65] Wang Y, Li X, Zhao X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 2016, 16(1): 448-453.

    [66] [66] Wang Y, Li X, Sreejith S, et al. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase[J]. Advanced Materials, 2016, 28(48): 10637-10643.

    [67] [67] Wang Y, Li X, Song J, et al. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics[J]. Advanced Materials, 2015, 27(44): 7101-7108.

    [68] [68] Gu Z, Wang K, Sun W, et al. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers[J]. Advanced Optical Materials, 2016, 4(3): 472-479.

    [69] [69] Wang K, Sun S, Zhang C, et al. Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors[J]. Materials Chemistry Frontiers, 2017(1): 447.

    [70] [70] Zhang D, Eaton S W, Yu Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires[J]. Journal of the American Chemical Society, 2015, 137(29): 9230-9233.

    [71] [71] Fu Y, Zhu H, Stoumpos C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I)[J]. ACS Nano, 2016, 10(8): 7963-7972.

    [72] [72] Park K, Lee J W, Kim J D, et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers[J]. Journal of Physical Chemistry Letters, 2016, 7(18): 3703-3710.

    [73] [73] Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14(10): 5995-6001.

    [74] [74] Liao Q, Hu K, Zhang H, et al. Perovskite microdisk microlasers self-assembled from solution[J]. Advanced Materials, 2015, 27(22): 3405-3410.

    [75] [75] Schmidt LC, Pertegás A, González-Carrero S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3): 850-853.

    [76] [76] Liu X, Niu L, Wu C, et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing[J]. Advanced Science, 2016, 3(11): 1600137.

    [77] [77] Zhang W, Peng L, Liu J, et al. Controlling the cavity structures of two-photon-pumped perovskite microlasers[J]. Advanced Materials, 2016, 28(21): 4040-4046.

    [78] [78] Yang B, Mao X, Yang S, et al. Low threshold two-photon-pumped amplified spontaneous emission in CH3NH3PbBr3 microdisks[J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19587-19592.

    [79] [79] He X, Liu P, Zhang H, et al. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite[J]. Advanced Materials, 2017, 29(12): 201604510.

    CLP Journals

    [1] Liu Yanzhen, Cui Yanxia. MAPbI3 Perovskite Nanowire Photodetectors[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102301

    Tools

    Get Citation

    Copy Citation Text

    Huo Chengxue, Wang Ziming, Li Xiaoming, Zeng Haibo. Low-Dimensional Metal Halide Perovskites: a Kind of Microcavity Laser Materials[J]. Chinese Journal of Lasers, 2017, 44(7): 703008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 6, 2017

    Accepted: --

    Published Online: Jul. 5, 2017

    The Author Email: Huo Chengxue (huochengxue@njust.edu.cn)

    DOI:10.3788/cjl201744.0703008

    Topics