Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 828(2025)

TiAl Film Deposited by Magnetron Sputtering on YSZ Thermal Barrier Coating and Its Anti-Corrosion Property Against CaO–MgO–Al2O3–SiO2

LIU Ruoyu1, SHU Chaoxi2、*, LI Pu3, LI Ke1, YUN Haitao1, YIN Qiannan1, LV Liang1, CHEN Yongguo1, WANG Yuncheng1, and CAO Xueqiang2
Author Affiliations
  • 1AECC South Industry Co. Ltd., Zhuzhou 412002, Hunan, China
  • 2State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • 3AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412000, Hunan, China
  • show less
    References(32)

    [1] [1] DREXLER J M, AYGUN A, LI D S, et al. Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation[J]. Surf Coat Technol, 2010, 204(16/17): 2683–2688.

    [2] [2] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nat Mater, 2016, 15(8): 804–809.

    [3] [3] CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bull, 2012, 37(10): 891–898.

    [4] [4] CLARKE D R, LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annu Rev Mater Res, 2003, 33: 383–417.

    [5] [5] MERCER C, FAULHABER S, EVANS A G, et al. A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration[J]. Acta Mater, 2005, 53(4): 1029–1039.

    [6] [6] MOHAN P, YUAN B, PATTERSON T, et al. Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO–MgO–Al2O3–SiO2) deposits[J]. Mater Sci Forum, 2008, 595–598: 207–212.

    [7] [7] KRMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits[J]. J Am Ceram Soc, 2006, 89(10): 3167–3175.

    [8] [8] ZHANG X F, ZHOU K S, LIU M, et al. CMAS corrosion and thermal cycle of Al-modified PS-PVD environmental barrier coating[J]. Ceram Int, 2018, 44(13): 15959–15964.

    [9] [9] ZHANG X F, ZHOU K S, LIU M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating[J]. Ceram Int, 2016, 42(16): 19349–19356.

    [10] [10] WELLMAN R, WHITMAN G, NICHOLLS J R. CMAS corrosion of EB PVD TBCs: Identifying the minimum level to initiate damage[J]. Int J Refract Met Hard Mater, 2010, 28(1): 124–132.

    [11] [11] KRAUSE A R, GARCES H F, DWIVEDI G, et al. Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J]. Acta Mater, 2016, 105: 355–366.

    [12] [12] KRMER S, YANG J, LEVI C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J]. J Am Ceram Soc, 2008, 91(2): 576–583.

    [13] [13] DREXLER J M, SHINODA K, ORTIZ A L, et al. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Mater, 2010, 58(20): 6835–6844.

    [14] [14] AYGUN A, VASILIEV A L, PADTURE N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Mater, 2007, 55(20): 6734–6745.

    [15] [15] SHI Y, LI B W, ZHAO M, et al. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent[J]. J Am Ceram Soc, 2018, 101(9): 3968–3978.

    [16] [16] HSIANG H I, YUNG S W, WANG C C. Crystallization, densification and dielectric properties of CaO–MgO–Al2O3–SiO2 glass with ZrO2 as nucleating agent[J]. Mater Res Bull, 2014, 60: 730–737.

    [17] [17] SENTURK B S, GARCES H F, ORTIZ A L, et al. CMAS-resistant plasma sprayed thermal barrier coatings based on Y2O3-stabilized ZrO2 with Al3+ and Ti4+ solute additions[J]. J Therm Spray Technol, 2014, 23(4): 708–715.

    [18] [18] WEBSTER R I, OPILA E J. The effect of TiO2 additions on CaO–MgO–Al2O3–SiO2 (CMAS) crystallization behavior from the melt[J]. J Am Ceram Soc, 2019, 102(6): 3354–3367.

    [19] [19] INOUE K, SAKIDA S, NANBA T, et al. Structure and optical properties of TiO2 containing oxide glasses[J]. Materials Science and Technology-Association for Iron and Steel Technology, 2006,3:583.

    [20] [20] MYSEN B O, VIRGO D, SCARFE C M. Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study[J]. Am Mineral, 1980, 65(7/8): 690–710.

    [21] [21] ZHENG K, LIAO J L, WANG X D, et al. Raman spectroscopic study of the structural properties of CaO–MgO–SiO2–TiO2 slags[J]. J Non Cryst Solids, 2013, 376: 209–215.

    [22] [22] REZVANI M, EFTEKHARI-YEKTA B, SOLATI-HASHJIN M, et al. Effect of Cr2O3, Fe2O3 and TiO2 nucleants on the crystallization behaviour of SiO2–Al2O3–CaO–MgO(R2O) glass-ceramics[J]. Ceram Int, 2005, 31(1): 75–80.

    [23] [23] MA M S, NI W, WANG Y L, et al. The effect of TiO2 on phase separation and crystallization of glass-ceramics in CaO–MgO–Al2O3–SiO2–Na2O system[J]. J Non Cryst Solids, 2008, 354(52–54): 5395–5401.

    [24] [24] LAI F F, LENG M, LI J L, et al. The crystallization behaviors of SiO2–Al2O3–CaO–MgO–TiO2 glass-ceramic systems[J]. Crystals, 2020, 10(9): 794.

    [25] [25] FANG H J, WANG W Z, HUANG J B, et al. Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS)[J]. Ceram Int, 2019, 45(16): 19710–19719.

    [26] [26] YANG F, ZHAO X F, XIAO P. Thermal conductivities of YSZ/Al2O3 composites[J]. J Eur Ceram Soc, 2010, 30(15): 3111–3116.

    [27] [27] ZHANG X F, ZHOU K S, XU W, et al.In situsynthesis of -alumina layer on thermal barrier coating for protection against CMAS (CaO–MgO–Al2O3–SiO2) corrosion[J]. Surf Coat Technol, 2015, 261: 54–59.

    [28] [28] SHU C X, WANG J S, LU X J, et al. Investigation of corrosion resistance of YSZ coating with sacrificial aluminum oxide protective layer against CMAS and composite corrosives[J]. J Eur Ceram Soc, 2024, 44(4): 2537–2549.

    [29] [29] BOROM M P, JOHNSON C A, PELUSO L A. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J]. Surf Coat Technol, 1996, 86: 116–126.

    [30] [30] WANG J S, WANG Y H, LU X J, et al. Comparison of corrosion behaviors and wettability of CMAS on Ta2O5–Y2O3 co-stabilized ZrO2 and YSZ thermal barrier coatings[J]. J Eur Ceram Soc, 2023, 43(13): 5636–5651.

    [31] [31] MOHAN P, YAO B, PATTERSON T, et al. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J]. Surf Coat Technol, 2009, 204(6/7): 797–801.

    [32] [32] OSBORN E F, SCHAIRER J F. The ternary system pseudowollastonite-akermanite-gehlenite[J]. Am J Sci, 1941, 239(10): 715–763.

    Tools

    Get Citation

    Copy Citation Text

    LIU Ruoyu, SHU Chaoxi, LI Pu, LI Ke, YUN Haitao, YIN Qiannan, LV Liang, CHEN Yongguo, WANG Yuncheng, CAO Xueqiang. TiAl Film Deposited by Magnetron Sputtering on YSZ Thermal Barrier Coating and Its Anti-Corrosion Property Against CaO–MgO–Al2O3–SiO2[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 828

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 26, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: SHU Chaoxi (317256@whut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240823

    Topics