Chinese Journal of Lasers, Volume. 40, Issue 8, 803002(2013)
Comparison of Melting Efficiency in High Power Fiber Laser and CO2 Laser Welding
[2] [2] W Penn. Trends in laser material processing for cutting, welding, and metal deposition using carbon dioxide, direct diode, and fiber lasers[C]. SPIE, 2005, 5706: 25-37.
[3] [3] Y Kawahito, N Matsumoto, M Mizutani, et al.. Characterisation of plasma induced during high power fibre laser welding of stainless steel[J]. Sci Technol Weld Join, 2008, 13(8): 744-748.
[4] [4] Y Kawahito, K Kinoshita, N Matsumoto, et al.. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Sci Technol Weld Join, 2008, 13(8): 749-753.
[5] [5] J Wang, C Wang, X Meng, et al.. Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding[J]. Opt Laser Technol, 2012, 44(1): 67-70.
[6] [6] Y Kawahito, M Mizutani, S Katayama. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry[J]. J Phys D: Appl Phys, 2007, 40(19): 5854-5859.
[7] [7] Y Kawahito, M Mizutani, S Katayama. High quality welding of stainless steel with 10 kW high power fibre laser[J]. Sci Technol Weld Join, 2009, 14(4): 288-294.
[8] [8] J Cho, D F Farson, M J Reiter. Analysis of penetration depth fluctuations in single-mode fibre laser welds[J]. J Phys D: Appl Phys, 2009, 42(11):115501
[9] [9] Tan Caiwang, Li Liqun, Chen Yanbin, et al.. Characteristics of fiber laser and CO2 laser welding of AZ31B magnesium alloys[J]. Chinese J Lasers, 2011, 38(6): 0603015.
[10] [10] H Hitoshi, I Takashi, K Shigeharu, et al.. Effect of shielding gas and laser wavelength in laser welding of magnesium alloy sheet[J]. Quarterly J Japan Welding Society, 2001, 19(4): 591-599.
[11] [11] Zhao Yaobang, Lei Zhenglong, Chen Yanbin. Analysis of melting characteristics of laser-arc double-sided welding for stainless steel[J]. Chinese J Lasers, 2011, 38(2): 0203001.
[12] [12] X Chen,H Wang. A calculation model for the evaporation recoil pressure in laser material processing[J]. J Phys D: Appl Phys, 2001, 34(17): 2637-2642.
[13] [13] V V Semak, R J Steele, P W Fuerschbach, et al.. Role of beam absorption in plasma during laser welding[J]. J Phys D: Appl Phys, 2000, 33(10): 1179-1185.
[14] [14] W Schulz, D Becker, J Franke, et al.. Heat conduction losses in laser cutting of metals[J]. J Phys D: Appl Phys, 1993, 26(9): 1357-1363.
[15] [15] T J Collat, M Vicanek, G Simon. Heat transport in melt flowing past the keyhole in deep penetration welding[J]. J Phys D: Appl Phys, 1994, 27(10): 2035-2040.
[16] [16] M G Galushkin, V S Golubev, R V Grishaev, et al.. The comparison of models for calculating heat conduction losses in laser cutting of metals[C]. SPIE, 2011, 7994: 79941Y.
[17] [17] A Kaplan. A model of deep penetration laser welding based on calculation of the keyhole profile[J]. J Phys D: Appl Phys, 1994, 27(9): 1805-1814.
[18] [18] A Mahrle, E Beyer. Theoretical aspects of fibre laser cutting[J]. J Phys D: Appl Phys, 2009, 42(17): 175507
Get Citation
Copy Citation Text
Zou Jianglin, Wu Shikai, Xiao Rongshi, Zhang Xinyi, Niu Jianqiang. Comparison of Melting Efficiency in High Power Fiber Laser and CO2 Laser Welding[J]. Chinese Journal of Lasers, 2013, 40(8): 803002
Category: laser manufacturing
Received: Feb. 1, 2013
Accepted: --
Published Online: Aug. 1, 2013
The Author Email: Jianglin Zou (zoujianglin1@163.com)