Photonics Research, Volume. 10, Issue 8, 1877(2022)

Stimulated generation of deterministic platicon frequency microcombs

Hao Liu1,5、†,*, Shu-Wei Huang1,2、†, Wenting Wang1, Jinghui Yang1, Mingbin Yu3, Dim-Lee Kwong3, Pierre Colman4, and Chee Wei Wong1,6、*
Author Affiliations
  • 1Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
  • 2Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
  • 3Institute of Microelectronics, Singapore, Singapore
  • 4Université de Bourgogne Franche-Comté, ICB, UMR CNRS 6303, Dijon, France
  • 5e-mail: haoliu1991@ucla.edu
  • 6e-mail: cheewei.wong@ucla.edu
  • show less
    References(73)

    [1] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [2] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [3] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [4] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kippenberg, J. E. Bowers. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [5] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    [6] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).

    [7] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, H. X. Tang. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett., 38, 2810-2813(2013).

    [8] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [9] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [10] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [11] Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, Q. Lin. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1148(2019).

    [12] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, T. J. Kippenberg. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [13] S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, C. W. Wong. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz. Sci. Rep., 5, 13355(2015).

    [14] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).

    [15] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [16] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. J. Kippenberg, K. Vahala, J. E. Bowers. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [17] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [18] S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, C. W. Wong. Globally stable microresonator turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X, 7, 041002(2017).

    [19] B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, C. W. Wong. Gate-tunable frequency combs in graphene–nitride microresonators. Nature, 558, 410-414(2018).

    [20] Q.-F. Yang, X. Yi, K. Y. Yang, K. Vahala. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560-564(2017).

    [21] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [22] M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, A. L. Gaeta. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

    [23] X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, K. Vahala. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [24] M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu, T. J. Kippenberg. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071-1077(2019).

    [25] T. E. Drake, J. R. Stone, T. C. Briles, S. B. Papp. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics, 14, 480-485(2020).

    [26] A. K. Vinod, S.-W. Huang, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Frequency microcomb stabilization via dual-microwave control. Commun. Phys., 4, 81(2021).

    [27] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [28] X. Ji, X. Yao, A. Klenner, Y. Gan, A. L. Gaeta, C. P. Hendon, M. Lipson. Chip-based frequency comb sources for optical coherence tomography. Opt. Express, 27, 19896-19905(2019).

    [29] P. J. Marchand, J. C. Skehan, J. Riemensberger, J. Ho, M. H. P. Pfeiffer, J. Liu, C. Hauger, T. Lasser, T. J. Kippenberg. Soliton microcomb based spectral domain optical coherence tomography. Nat. Commun., 12, 427(2019).

    [30] S.-W. Huang, J. Yang, M. Yu, B. H. McGuyer, D.-L. Kwong, T. Zelevinsky, C. W. Wong. A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty. Sci. Adv., 2, e1501489(2016).

    [31] J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, K. L. Vodopyanov. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy. New J. Phys., 15, 105014(2013).

    [32] Y.-S. Jang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021).

    [33] J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E. Lucas, J. Liu, T. J. Kippenberg. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [34] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [35] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, V. Torres-Company. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

    [36] B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun., 11, 2568(2020).

    [37] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [38] S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, M. Lipson. On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities. Opt. Express, 22, 26517-26525(2014).

    [39] A. E. Dorche, S. Abdollahramezani, H. Taheri, A. A. Eftekhar, A. Adibi. Extending chip-based Kerr-comb to visible spectrum by dispersive wave engineering. Opt. Express, 25, 22362-22374(2017).

    [40] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, M. Qi. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 3, 1171-1180(2016).

    [41] H. Zhou, S.-W. Huang, Y. Dong, M. Liao, K. Qiu, C. W. Wong. Stability and intrinsic fluctuations of dissipative cavity solitons in Kerr frequency microcombs. IEEE Photon. J., 7, 3200113(2015).

    [42] S.-W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression. Sci. Rep., 6, 26255(2016).

    [43] A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, T. J. Kippenberg. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett., 41, 452-455(2016).

    [44] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [45] H. Zhou, Y. Geng, W. Cui, S. W. Huang, Q. Zhou, K. Qiu, C. W. Wong. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [46] E. Lucas, H. Guo, J. D. Jost, M. Karpov, T. J. Kippenberg. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A, 95, 043822(2017).

    [47] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).

    [48] G. Lihachev, J. Liu, W. Weng, L. Chang, J. Guo, J. He, R. N. Wang, M. H. Anderson, J. E. Bowers, T. J. Kippenberg. Platicon microcomb generation using laser self-injection locking. Nat. Commun., 13, 1771(2022).

    [49] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, T. J. Kippenberg. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [50] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [51] S.-W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D.-L. Kwong, L. Maleki, C. W. Wong. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114, 053901(2015).

    [52] A. B. Matsko, A. A. Savchenkov, L. Maleki. Normal group-velocity dispersion Kerr frequency comb. Opt. Lett., 37, 43-45(2012).

    [53] C. Godey, I. V. Balakireva, A. Coillet, Y. K. Chembo. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 89, 063814(2014).

    [54] W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, L. Maleki. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 39, 2920-2923(2014).

    [55] A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, A. L. Gaeta, K. Bergman. Integrated Kerr frequency comb-driven silicon photonic transmitter(2021).

    [56] H. Shu, L. Chang, Y. Tao, B. Shen, W. Xie, M. Jin, A. Netherton, Z. Tao, X. Zhang, R. Chen, B. Bai, J. Qin, S. Yu, X. Wang, J. E. Bowers. Bridging microcombs and silicon photonic engines for optoelectronics systems. Nature, 605, 457-463(2022).

    [57] V. E. Lobanov, G. Lihachev, T. J. Kippenberg, M. L. Gorodetsky. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express, 23, 7713-7721(2015).

    [58] Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1, 137-144(2014).

    [59] X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, A. M. Weiner. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev., 9, L23-L28(2015).

    [60] Ó. B. Helgason, F. R. Arteaga-Sierra, Z. Ye, K. Twayana, P. A. Andrekson, M. Karlsson, J. Schröder, V. Torres-Company. Dissipative solitons in photonic molecules. Nat. Photonics, 15, 305-310(2021).

    [61] V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko, M. L. Gorodetsky. Dynamics of platicons due to third-order dispersion. Eur. Phys. J. D, 71, 185(2017).

    [62] V. E. Lobanov, A. E. Shitikov, R. R. Galiev, K. N. Min’kov, N. M. Kondratiev. Generation and properties of dissipative Kerr solitons and platicons in optical microresonators with backscattering. Opt. Express, 28, 36544-36558(2020).

    [63] A. M. Kaplan, G. P. Agrawal, D. N. Maywar. Optical square-wave clock generation based on an all-optical flip-flop. IEEE Photon. Technol. Lett., 22, 489-491(2010).

    [64] L. K. Oxenlowe, R. Slavik, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, P. Jeppesen. 640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper. IEEE J. Sel. Top. Quantum Electron., 14, 566-572(2008).

    [65] E. Palushani, L. K. Oxenlowe, M. Galili, H. Mulvad, A. T. Clausen, P. Jeppesen. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing. IEEE J. Quantum Electron., 45, 1317-1324(2009).

    [66] V. V. Lozovoy, G. Rasskazov, A. Ryabtsev, M. Dantus. Phase-only synthesis of ultrafast stretched square pulses. Opt. Express, 23, 27105-27112(2015).

    [67] M. H. Anderson, G. Lihachev, W. Weng, J. Liu, T. J. Kippenberg. Zero-dispersion Kerr solitons in optical microresonators(2020).

    [68] V. E. Lobanov, G. Lihachev, M. L. Gorodetsky. Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump. Europhys. Lett., 112, 54008(2015).

    [69] H. Liu, S.-W. Huang, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Bright square pulse generation by pump modulation in a normal GVD microresonator. Conference on Lasers and Electro-Optics, FTu3D.3(2017).

    [70] A. Antikainen, G. P. Agrawal. Dual-pump frequency comb generation in normally dispersive optical fibers. J. Opt. Soc. Am. B, 32, 1705-1711(2015).

    [71] C. Finot, B. Kibler, L. Provost, S. Wabnitz. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B, 25, 1938-1948(2008).

    [72] J. Fatome, C. Finot, G. Millot, A. Armaroli, S. Trillo. Observation of optical undular bores in multiple four-wave mixing. Phys. Rev. X, 4, 021022(2014).

    [73] W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, T. J. Kippenberg. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019).

    Tools

    Get Citation

    Copy Citation Text

    Hao Liu, Shu-Wei Huang, Wenting Wang, Jinghui Yang, Mingbin Yu, Dim-Lee Kwong, Pierre Colman, Chee Wei Wong, "Stimulated generation of deterministic platicon frequency microcombs," Photonics Res. 10, 1877 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Mar. 28, 2022

    Accepted: May. 15, 2022

    Published Online: Jul. 21, 2022

    The Author Email: Hao Liu (haoliu1991@ucla.edu), Chee Wei Wong (cheewei.wong@ucla.edu)

    DOI:10.1364/PRJ.459403

    Topics