Optics and Precision Engineering, Volume. 32, Issue 3, 435(2024)

Attention interaction based RGB-T tracking method

Wei WANG, Feiya FU, Hao LEI, and Zili TANG*
Author Affiliations
  • The 63870 Unit of PLA, Weinan714299, China
  • show less
    References(32)

    [1] LI C L, LIANG X Y, LU Y J et al. RGB-T object tracking: Benchmark and baseline[J]. Pattern Recognition, 96, 106977(2019).

    [2] ZHANG X C, YE P, LEUNG H et al. Object fusion tracking based on visible and infrared images: a comprehensive review[J]. Information Fusion, 63, 166-187(2020).

    [3] LI C L, XUE W L, JIA Y Q et al. LasHeR: a large-scale high-diversity benchmark for RGBT tracking[J]. IEEE Transactions on Image Processing, 31, 392-404(2022).

    [4] LI C L, CHENG H, HU S Y et al. Learning collaborative sparse representation for grayscale-thermal tracking[J]. IEEE Transactions on Image Processing, 25, 5743-5756(2016).

    [5] ZHANG P Y, ZHAO J, BO C J et al. Jointly modeling motion and appearance cues for robust RGB-T tracking[J]. IEEE Transactions on Image Processing, 30, 3335-3347(2021).

    [6] LI C L, WU X H, ZHAO N et al. Fusing two-stream convolutional neural networks for RGB-T object tracking[J]. Neurocomputing, 281, 78-85(2018).

    [7] HENRIQUES J F, CASEIRO R, MARTINS P et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 583-596(2015).

    [8] ZHANG L C, DANELLJAN M, GONZALEZ-GARCIA A et al. Multi-modal fusion for end-to-end RGB-T tracking[C], 27, 2252-2261(2019).

    [9] BHAT G, DANELLJAN M, VAN GOOL L et al. Learning discriminative model prediction for tracking[C], 6181-6190(2019).

    [10] YAN B, PENG H W, FU J L et al. Learning spatio-temporal transformer for visual tracking[C], 10, 10428-10437(2021).

    [11] LI B, WU W, WANG Q et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C], 15, 4277-4286(2019).

    [12] ZHANG T L, LIU X R, ZHANG Q et al. SiamCDA: complementarity- and distractor-aware RGB-T tracking based on Siamese network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 1403-1417(2022).

    [13] HAN B. Learning multi-domain convolutional neural networks for visual tracking[C], 27, 4293-4302(2016).

    [14] LI C L, LU A D, ZHENG A H et al. Multi-adapter RGBT tracking[C], 27, 2262-2270(2019).

    [15] ZHANG P Y, WANG D, LU H C et al. Learning adaptive attribute-driven representation for real-time RGB-T tracking[J]. International Journal of Computer Vision, 129, 2714-2729(2021).

    [16] LI C L, LIU L, LU A D et al. Challenge-aware RGBT Tracking[M]. Computer Vision-ECCV 2020, 222-237(2020).

    [17] XIAO Y, YANG M M, LI C L et al. Attribute-based progressive fusion network for RGBT tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 2831-2838(2022).

    [18] WANG C Q, XU C Y, CUI Z et al. Cross-modal pattern-propagation for RGB-T tracking[C], 13, 7062-7071(2020).

    [19] XU C Y, CUI Z, WANG C Q et al. Learning cross-modal interaction for RGB-T tracking[J]. Science China Information Sciences, 66, 119103(2022).

    [20] VASWANI A, SHAZEER N M, PARMAR N et al. Attention is all you need[C], 5998-6008(2017).

    [21] DOSOVITSKIY A, BEYER L, KOLESNIKOV A et al. An image is worth 16×16 words: transformers for image recognition at scale[C], 1(2021).

    [22] LIU Z, LIN Y T, CAO Y et al. Swin Transformer: hierarchical Vision Transformer using Shifted Windows[C], 10, 9992-10002(2021).

    [23] ZHU X Z, SU W J, LU L W et al. Deformable DETR: deformable transformers for end-to-end object detection[C], 1(2021).

    [24] CHEN B Y, LI P X, BAI L et al. Backbone is all your need: a simplified architecture for visual object tracking[C], 375-392(2022).

    [25] ZHU Y B, LI C L, TANG J et al. Quality-aware feature aggregation network for robust RGBT tracking[J]. IEEE Transactions on Intelligent Vehicles, 6, 121-130(2021).

    [26] MEI J T, ZHOU D M, CAO J D et al. HDINet: hierarchical dual-sensor interaction network for RGBT tracking[J]. IEEE Sensors Journal, 21, 16915-16926(2021).

    [27] TU Z Z, LIN C, ZHAO W et al. M5L: multi-modal multi-margin metric learning for RGBT tracking[J]. IEEE Transactions on Image Processing, 31, 85-98(2022).

    [28] GAO Y, LI C L, ZHU Y B et al. Deep adaptive fusion network for high performance RGBT tracking[C], 91-99(2019).

    [29] ZHU Y B, LI C L, LUO B et al. Dense feature aggregation and pruning for RGBT tracking[C], 465-472(25).

    [30] ZHANG H, ZHANG L, ZHUO L et al. Object tracking in RGB-T videos using modal-aware attention network and competitive learning[J]. Sensors, 20, 393(2020).

    [31] LU A D, QIAN C, LI C L et al. Duality-gated mutual condition network for RGBT tracking[J]. IEEE Transactions on Neural Networks and Learning Systems(2022).

    [32] LI C L, ZHU C L, HUANG Y et al. Cross-modal ranking with soft consistency and noisy labels for robust RGB-T tracking[C], 831-847(2018).

    CLP Journals

    [1] Jing JIN, Jianqin LIU, Fengwen ZHAI. RGB-T tracking network based on multi-modal feature fusion[J]. Optics and Precision Engineering, 2025, 33(12): 1940

    [2] Jing JIN, Jianqin LIU, Fengwen ZHAI. RGB-T tracking network based on multi-modal feature fusion[J]. Optics and Precision Engineering, 2025, 33(12): 1940

    Tools

    Get Citation

    Copy Citation Text

    Wei WANG, Feiya FU, Hao LEI, Zili TANG. Attention interaction based RGB-T tracking method[J]. Optics and Precision Engineering, 2024, 32(3): 435

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 19, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: Zili TANG (tang_zili@qq.com)

    DOI:10.37188/OPE.20243203.0435

    Topics