Chinese Journal of Lasers, Volume. 50, Issue 21, 2107104(2023)
Temperature‑Responsive Phase‑Change AuNR@PNIPAM Nanoprobe for the Second Near‑Infrared Region Tumor‑Contrast Photoacoustic Imaging
[1] Bell A G. On the production and reproduction of sound by light[J]. American Journal of Science, 3, 305-324(1880).
[2] Wang L V. Prospects of photoacoustic tomography[J]. Medical Physics, 35, 5758-5767(2008).
[3] Mu G, Zhang Z H, Shi Y J. Photoacoustic imaging technology in biomedical imaging[J]. Chinese Journal of Lasers, 49, 2007208(2022).
[4] Kobat D, Durst M E, Nishimura N et al. Deep tissue multiphoton microscopy using longer wavelength excitation[J]. Optics Express, 17, 13354-13364(2009).
[5] Balu M, Baldacchini T, Carter J L et al. Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media[J]. Journal of Biomedical Optics, 14, 010508(2009).
[6] Wang S W, Lei M. Near infrared-Ⅱ excited multiphoton fluorescence imaging[J]. Laser & Optoelectronics Progress, 59, 0617002(2022).
[7] Dai H M, Ruan X H, Shao J J et al. Activatable NIR-Ⅱ small molecules for bioimaging[J]. Laser & Optoelectronics Progress, 59, 0617010(2022).
[8] Li W W, Chen X Y. Gold nanoparticles for photoacoustic imaging[J]. Nanomedicine, 10, 299-320(2015).
[9] Chen Y S, Frey W, Kim S et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers[J]. Nano Letters, 11, 348-354(2011).
[10] Ng K K, Shakiba M, Huynh E et al. Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications[J]. ACS Nano, 8, 8363-8373(2014).
[11] Dai Y N, Su J Z, Wu K et al. Multifunctional thermosensitive liposomes based on natural phase-change material: near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy[J]. ACS Applied Materials & Interfaces, 11, 10540-10553(2019).
[12] Xie J, Li A Q, Li J S. Advances in pH-sensitive polymers for smart insulin delivery[J]. Macromolecular Rapid Communications, 38, 1700413(2017).
[13] Li H M, Jiang H, Zhao M N et al. Intracellular redox potential-responsive micelles based on polyethylenimine-cystamine-poly(ε-caprolactone) block copolymer for enhanced miR-34a delivery[J]. Polymer Chemistry, 6, 1952-1960(2015).
[14] Peng W L, Zhang Z P, Rong M Z et al. Core-shell structure design of hollow mesoporous silica nanospheres based on thermo-sensitive PNIPAM and pH-responsive catechol-Fe3+ complex[J]. Polymers, 11, 1832(2019).
[15] Gliozzi A S, Miniaci M, Chiappone A et al. Tunable photo-responsive elastic metamaterials[J]. Nature Communications, 11, 2576(2020).
[16] Lü R C, Yang P P, He F et al. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light[J]. ACS Nano, 9, 1630-1647(2015).
[17] Huang P, Rong P F, Jin A et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy[J]. Advanced Materials, 26, 6401-6408(2014).
[18] Lin L S, Yang X Y, Niu G et al. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics[J]. Nanoscale, 8, 2116-2122(2016).
[19] Topete A, Alatorre-Meda M, Villar-Alvarez E M et al. Polymeric-gold nanohybrids for combined imaging and cancer therapy[J]. Advanced Healthcare Materials, 3, 1309-1325(2014).
[20] Meyer D E, Shin B C, Kong G A et al. Drug targeting using thermally responsive polymers and local hyperthermia[J]. Journal of Controlled Release, 74, 213-224(2001).
[21] Drake P, Cho H J, Shih P S et al. Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia[J]. Journal of Materials Chemistry, 17, 4914-4918(2007).
[22] Cao Y X, Zhang C, Shen W B et al. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery[J]. Journal of Controlled Release, 120, 186-194(2007).
[23] Schild H G. Poly(N-isopropylacrylamide): experiment, theory and application[J]. Progress in Polymer Science, 17, 163-249(1992).
[24] Jones C D, Lyon L A. Synthesis and characterization of multiresponsive core-shell microgels[J]. Macromolecules, 33, 8301-8306(2000).
[25] Ye X C, Zheng C, Chen J et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods[J]. Nano Letters, 13, 765-771(2013).
[26] Contreras-Cáceres R, Pastoriza-Santos I, Alvarez-Puebla R et al. Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection[J]. Chemistry-A European Journal, 16, 9462-9467(2010).
[27] Link S, Mohamed M B, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant[J]. The Journal of Physical Chemistry B, 103, 3073-3077(1999).
[28] Pamies R, Zhu K Z, Kjøniksen A L et al. Thermal response of low molecular weight poly-(N-isopropylacrylamide) polymers in aqueous solution[J]. Polymer Bulletin, 62, 487-502(2009).
[29] Toma M, Jonas U, Mateescu A et al. Active control of SPR by thermoresponsive hydrogels for biosensor applications[J]. The Journal of Physical Chemistry C, 117, 11705-11712(2013).
[30] Philipp M, Kyriakos K, Silvi L et al. From molecular dehydration to excess volumes of phase-separating PNIPAM solutions[J]. The Journal of Physical Chemistry B, 118, 4253-4260(2014).
Get Citation
Copy Citation Text
Xiaodong Sun, Yujiao Shi. Temperature‑Responsive Phase‑Change AuNR@PNIPAM Nanoprobe for the Second Near‑Infrared Region Tumor‑Contrast Photoacoustic Imaging[J]. Chinese Journal of Lasers, 2023, 50(21): 2107104
Category: Biomedical Optical Imaging
Received: Mar. 9, 2023
Accepted: May. 24, 2023
Published Online: Nov. 7, 2023
The Author Email: Yujiao Shi (shiyuj@scnu.edu.cn)