Infrared and Laser Engineering, Volume. 49, Issue 12, 20201073(2020)
Recent development of low noise laser for precision measurement (Invited)
[1] Abbott B P, Abbott R, Abbott T D. Observation of gravitational waves from a binary black hole merger[J]. Phys. Rev. Lett., 116, 061102(2016).
[2] Harry Gregory M, the LIGO Scientific Collaboration. Advanced LIGO: the next generation of gravitational wave detectors[J]. Class. Quantum Grav., 27, 084006(2010).
[7] Zhang H W, Cao Y, Shi W. Experimental investigation on spectral linewidth and relative intensity noise of high-power single-frequency polarization-maintained Thulium-doped fiber amplifier[J]. IEEE Photonics Journal, 8, 1-9(2016).
[9] Zhang L M, Yan C P, Feng J J. 180 W single frequency all fiber laser[J]. Infrared and Laser Engineering, 47, 1105001(2008).
[15] Lai W C, Ma P F, Liu W. 550-W Single-Frequency All-Fiber Amplifier with Near-Diffraction-Limited Beam Quality[J]. Chinese Journal of Lasers, 47, 1-3(2020).
[17] Zhao J, Guiraud G, Pierre C. High-power all-fiber ultra-low noise laser[J]. Applied Physics B, 124, 1-7(2018).
[18] Yang C S, Xu S H, Chen D. 52 W kHz-linewidth low-noise linearlypolarized all-fiber single-frequency MOPA laser[J]. J. Opt., 18, 1-5(2016).
[19] [19] Yang C S, Guan X C, Xu S H, et al. 210W kHzlinewidth linearlypolarized allfiber singlefrequency MOPA laser[C]. CLEO_AT, 2018, JTu2A. 164.
[21] Shi S P, Yang W H, Zheng Y H. Noise analysis of single-frequency laser source in preparation of squeezed-state light field[J]. Chinese Journal of Lasers, 46, 62-67(2019).
[24] Vahlbruch H, Wilken D, Mehmet M. Laser power stabilization beyond the shot noise limit using squeezed light[J]. Phys. Rev. Lett., 121, 173601(2018).
[25] Tse M, Yu H C, Kijbunchoo N. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Phys. Rev. Lett., 123, 231107(2019).
[26] Acernese F, Agathos M, Aiello L. Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light[J]. Phys. Rev. Lett., 123, 2311081(2019).
[30] Wang Y J, Zheng Y H, Shi Z. High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms[J]. Laser Phys. Lett., 9, 1-5(2012).
[33] Harb C C, Ralph T C, Huntington E H. Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source[J]. J. Opt. Soc. Am. B, 14, 2752-3260(1997).
[35] Yang W H, Wang Y J, Li Z X. Compactand low-noise intracavity frequency-doubled single-frequency Nd:YAP/KTP laser[J]. Chinese Journal of Lasers, 41, 0502002(2014).
[38] Zhang H Y, Wang J R, Li Q H. Experimental realization of high quality factor resonance detector[J]. Journal of Quantum Optics, 25, 456-462(2019).
[39] Chen C Y, Shi S P, and Zheng Y H. Low-noise, transformer-coupled resonant photodetector for squeezed state generation[J]. Rev. Sci. Instrum., 88, 103101(2017).
[40] Zhou H J, Yang W H, Li Z X. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement[J]. Rev. Sci. Instrum., 85, 013111(2014).
[49] [49] Steinlechner S, Quantum metrology with squeezed entangled light f the detection of gravitational waves[D]. Germany: Leibniz Universität Hannover, 2013.
[51] Schnabel R. Squeezed states of light and their applications in laser interferometers[J]. Physics Reports, 684, 1-51(2017).
[52] Chua S S Y, Slagmolen B J J, Shaddock D A. Quantum squeezed light in gravitational-wave detectors[J]. Class. Quantum Grav., 31, 183001(2014).
[58] McKenzie K, Grosse N, Bowen W P. Squeezing in the audio gravitational-wave detection band[J]. Phys. Rev. Lett., 93, 161105(2004).
[59] Vahlbruch H, Chelkowski S, Hage B. Coherent control of vacuum squeezing in the gravitational-wave detection band[J]. Phys. Rev. Lett., 97, 011101(2006).
[60] Vahlbruch H, Chelkowski S, Danzmann K. Quantum engineering of squeezed states for quantum communication and metrology[J]. New J. Phys., 9, 12505-12508(2007).
[62] Vahlbruch H, Mehmet M, Chelkowski S. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Phys. Rev. Lett., 100, 033602(2008).
[63] Eberle T, Steinlechner S, Bauchrowitz J. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection[J]. Phys. Rev. Lett., 104, 2511021(2010).
[64] Vahlbruch H, Khalaidovski A, Lastzka N. The GEO 600 squeezed light source[J]. Class. Quantum Grav., 27, 084027(2010).
[66] Stefszky M S, Mow-Lowry C M, Chua S S Y. Balanced homodyne detection of optical quantum states at audio-band frequencies and below[J]. Class. Quantum Grav., 29, 145015(2012).
[68] Vahlbruch H, Mehmet M, Danzmann K. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Phys. Rev. Lett., 117, 110801(2016).
[75] Zhang W H, Wang J R, Zheng Y H. Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator[J]. Appl. Phys. Lett., 115, 171103(2019).
[76] Sun X C, Wang Y J, Tian L. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection[J]. Chinese Opt. Lett., 17, 072701(2019).
[78] Shi S P, Tian L, Wang Y J. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes[J]. Phys. Rev. Lett., 125, 070502(2020).
Get Citation
Copy Citation Text
Yajun Wang, Li Gao, Xiaoli Zhang, Yaohui Zheng. Recent development of low noise laser for precision measurement (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201073
Category: Advanced Laser Technology
Received: Oct. 23, 2020
Accepted: --
Published Online: Jan. 14, 2021
The Author Email: Yaohui Zheng (王雅君(1983-),男,副教授,硕士生导师,博士,主)