Infrared and Laser Engineering, Volume. 49, Issue 12, 20201073(2020)

Recent development of low noise laser for precision measurement (Invited)

Yajun Wang1, Li Gao2, Xiaoli Zhang2, and Yaohui Zheng1、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
  • show less
    References(78)

    [1] Abbott B P, Abbott R, Abbott T D. Observation of gravitational waves from a binary black hole merger[J]. Phys. Rev. Lett., 116, 061102(2016).

    [2] Harry Gregory M, the LIGO Scientific Collaboration. Advanced LIGO: the next generation of gravitational wave detectors[J]. Class. Quantum Grav., 27, 084006(2010).

    [7] Zhang H W, Cao Y, Shi W. Experimental investigation on spectral linewidth and relative intensity noise of high-power single-frequency polarization-maintained Thulium-doped fiber amplifier[J]. IEEE Photonics Journal, 8, 1-9(2016).

    [9] Zhang L M, Yan C P, Feng J J. 180 W single frequency all fiber laser[J]. Infrared and Laser Engineering, 47, 1105001(2008).

    [15] Lai W C, Ma P F, Liu W. 550-W Single-Frequency All-Fiber Amplifier with Near-Diffraction-Limited Beam Quality[J]. Chinese Journal of Lasers, 47, 1-3(2020).

    [17] Zhao J, Guiraud G, Pierre C. High-power all-fiber ultra-low noise laser[J]. Applied Physics B, 124, 1-7(2018).

    [18] Yang C S, Xu S H, Chen D. 52 W kHz-linewidth low-noise linearlypolarized all-fiber single-frequency MOPA laser[J]. J. Opt., 18, 1-5(2016).

    [19] [19] Yang C S, Guan X C, Xu S H, et al. 210W kHzlinewidth linearlypolarized allfiber singlefrequency MOPA laser[C]. CLEO_AT, 2018, JTu2A. 164.

    [21] Shi S P, Yang W H, Zheng Y H. Noise analysis of single-frequency laser source in preparation of squeezed-state light field[J]. Chinese Journal of Lasers, 46, 62-67(2019).

    [24] Vahlbruch H, Wilken D, Mehmet M. Laser power stabilization beyond the shot noise limit using squeezed light[J]. Phys. Rev. Lett., 121, 173601(2018).

    [25] Tse M, Yu H C, Kijbunchoo N. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Phys. Rev. Lett., 123, 231107(2019).

    [26] Acernese F, Agathos M, Aiello L. Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light[J]. Phys. Rev. Lett., 123, 2311081(2019).

    [30] Wang Y J, Zheng Y H, Shi Z. High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms[J]. Laser Phys. Lett., 9, 1-5(2012).

    [33] Harb C C, Ralph T C, Huntington E H. Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source[J]. J. Opt. Soc. Am. B, 14, 2752-3260(1997).

    [35] Yang W H, Wang Y J, Li Z X. Compactand low-noise intracavity frequency-doubled single-frequency Nd:YAP/KTP laser[J]. Chinese Journal of Lasers, 41, 0502002(2014).

    [38] Zhang H Y, Wang J R, Li Q H. Experimental realization of high quality factor resonance detector[J]. Journal of Quantum Optics, 25, 456-462(2019).

    [39] Chen C Y, Shi S P, and Zheng Y H. Low-noise, transformer-coupled resonant photodetector for squeezed state generation[J]. Rev. Sci. Instrum., 88, 103101(2017).

    [40] Zhou H J, Yang W H, Li Z X. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement[J]. Rev. Sci. Instrum., 85, 013111(2014).

    [49] [49] Steinlechner S, Quantum metrology with squeezed entangled light f the detection of gravitational waves[D]. Germany: Leibniz Universität Hannover, 2013.

    [51] Schnabel R. Squeezed states of light and their applications in laser interferometers[J]. Physics Reports, 684, 1-51(2017).

    [52] Chua S S Y, Slagmolen B J J, Shaddock D A. Quantum squeezed light in gravitational-wave detectors[J]. Class. Quantum Grav., 31, 183001(2014).

    [58] McKenzie K, Grosse N, Bowen W P. Squeezing in the audio gravitational-wave detection band[J]. Phys. Rev. Lett., 93, 161105(2004).

    [59] Vahlbruch H, Chelkowski S, Hage B. Coherent control of vacuum squeezing in the gravitational-wave detection band[J]. Phys. Rev. Lett., 97, 011101(2006).

    [60] Vahlbruch H, Chelkowski S, Danzmann K. Quantum engineering of squeezed states for quantum communication and metrology[J]. New J. Phys., 9, 12505-12508(2007).

    [62] Vahlbruch H, Mehmet M, Chelkowski S. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Phys. Rev. Lett., 100, 033602(2008).

    [63] Eberle T, Steinlechner S, Bauchrowitz J. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection[J]. Phys. Rev. Lett., 104, 2511021(2010).

    [64] Vahlbruch H, Khalaidovski A, Lastzka N. The GEO 600 squeezed light source[J]. Class. Quantum Grav., 27, 084027(2010).

    [66] Stefszky M S, Mow-Lowry C M, Chua S S Y. Balanced homodyne detection of optical quantum states at audio-band frequencies and below[J]. Class. Quantum Grav., 29, 145015(2012).

    [68] Vahlbruch H, Mehmet M, Danzmann K. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Phys. Rev. Lett., 117, 110801(2016).

    [75] Zhang W H, Wang J R, Zheng Y H. Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator[J]. Appl. Phys. Lett., 115, 171103(2019).

    [76] Sun X C, Wang Y J, Tian L. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection[J]. Chinese Opt. Lett., 17, 072701(2019).

    [78] Shi S P, Tian L, Wang Y J. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes[J]. Phys. Rev. Lett., 125, 070502(2020).

    CLP Journals

    [1] Can Li, Pu Zhou, Pengfei Ma, Man Jiang, Yue Tao, Liu Liu. Research progress of single-frequency fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220237

    [2] Weijie Wang, Fan Li, Jianbo Li, Mingjian Ju, Li'ang Zheng, Yuhang Tian, Wangbao Yin, Long Tian, Yaohui Zheng. Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220300

    Tools

    Get Citation

    Copy Citation Text

    Yajun Wang, Li Gao, Xiaoli Zhang, Yaohui Zheng. Recent development of low noise laser for precision measurement (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201073

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Advanced Laser Technology

    Received: Oct. 23, 2020

    Accepted: --

    Published Online: Jan. 14, 2021

    The Author Email: Yaohui Zheng (王雅君(1983-),男,副教授,硕士生导师,博士,主)

    DOI:10.3788/IRLA20201073

    Topics