Chinese Journal of Lasers, Volume. 42, Issue 8, 814002(2015)
Research on the Radial Velocity Bias in Doppler Wind Lidar Based on Fabry-Perot Interferometer
[1] [1] European Space Agency. ADM-Aeolus Science Report: ESA SP-1311, 2008[OL].https://earth.esa.int/pi/esa?id=3409&sideExpandedNavigationBoxId=Aos&cmd=image&topSelectedNavigationNodeId=AOS&targetIFramePage=%2Fweb%2Fguest%2Fpi-community%2Fapply-for-data%2Fao-s&ts=1402339874955&type=file&colorTheme=03&sideNavigationType=AO&table=aotarget.[2015-6-3].
[2] [2] W Baker, R Atlas, C Cardinali, et al.. Lidar-measured wind profiles: the missing link in the global observing system[J]. B AM Meteorol Soc, 2014, 95(4): 543-564.
[3] [3] M L Chanin, A Garnier, A Hauchecorne, et al.. A Doppler lidar for measuring winds in middle atmosphere[J]. Geophys Res Lett, 1989, 16(11): 1273-1276.
[4] [4] C L Korb, B M Gentry, S X Li, et al.. Theory of the double-edge technique for Doppler lidar wind measurement[J]. Appl Opt, 1998, 37(15): 3097-3104.
[5] [5] C Flesia, C L Korb. Theory of the double-edge molecular technique for Doppler lidar wind measurement[J]. Appl Opt, 1999, 38(3): 432-440.
[6] [6] B M Gentry, H Chen, S X Li. Wind measurements with 355-nm molecular Doppler lidar[J]. Opt Lett, 2000, 25(17): 1231-1233.
[7] [7] O Reitebuch, C Lemmerz, E Nagel, et al.. The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADMAeolus. Part I: Instrument design and comparison to satellite instrument[J]. J Atmos Ocean Tech, 2009, 26(12): 2501-2515.
[8] [8] G Baumgarten. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in middle atmosphere up to 80 km[J]. Atoms Meas Tech, 2010, 3(6): 1509-1518.
[9] [9] Z Shu, X Dou, H Xia, et al.. Low stratospheric wind measurement using mobile Rayleigh Doppler wind LIDAR[J]. Journal of the Optical Society of Korea, 2012, 16(2): 141-144.
[10] [10] H Xia, X Dou, D Sun, et al.. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method[J]. Opt Exp, 2012, 20(14): 15286-15300.
[11] [11] Dou X, Y Han, D Sun, et al.. Mobile Rayleigh Doppler Lidar for wind an temperature measurements in the stratosphere and lower mesosphere[J]. Opt Exp, 2014, 22(s5): A1203-A1221.
[12] [12] C Souprayen, A Garnier, A Hertzog, et al.. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrument setup, validation, and first climatological results[J]. Appl Opt, 1999, 38(12): 2410-2421.
[13] [13] T Schroder, C Lemmerz, O Reitebuch, et al.. Frequency jitter and spectral width of an injection-seeded Q-switched Nd∶YAG laser for a Doppler wind lidar[J]. Applied Physics B, 2007, 87(3): 437-444.
[14] [14] C Souprayen, A Garnier, A Hertzog. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration[J]. Appl Opt, 1999, 38(12): 2422-2431.
[15] [15] F Zhang, X Dou, D Sun, et al.. Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements[J]. Opt Eng, 2014, 53(12): 124102.
Get Citation
Copy Citation Text
Zhang Feifei, Wang Guocheng, Sun Dongsong, Dou Xiankang, Zhou Yingjie, Hu Dongdong, Li Jianyue. Research on the Radial Velocity Bias in Doppler Wind Lidar Based on Fabry-Perot Interferometer[J]. Chinese Journal of Lasers, 2015, 42(8): 814002
Category: remote sensing and sensor
Received: Mar. 13, 2015
Accepted: --
Published Online: Sep. 24, 2022
The Author Email: Feifei Zhang (feizhang@mail.ustc.edu.cn)