Journal of the Chinese Ceramic Society, Volume. 53, Issue 8, 2340(2025)
Nano-Silica Modified In-situ Polymerized Cementitious Materials (iPMCM): Properties Enhancement and Strengthening Mechanism
[1] [1] YUAN P L, ZHANG B D, YANG Y T, et al. Application of polymer cement repair mortar in underground engineering: A review[J]. Case Stud Constr Mater, 2023, 19: e02555.
[2] [2] ZHANG X J, DU M R, FANG H Y, et al. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges[J]. Constr Build Mater, 2021, 299: 124290.
[3] [3] WU K, LONG J F, QING L B, et al. Recent advance of monomerin-situpolymerization modified cement-based materials[J]. Constr Build Mater, 2024, 432: 136542.
[4] [4] FAN L D, XU F, WANG S R, et al. A review on the modification mechanism of polymer on cement-based materials[J]. J Mater Res Technol, 2023, 26: 5816-5837.
[5] [5] LIANG R, LIU Q, HOU D S, et al. Flexural strength enhancement of cement paste through monomer incorporation and in situ bond formation[J]. Cem Concr Res, 2022, 152: 106675.
[7] [7] ZHANG H B, ZHOU R, LIU S H, et al. Enhanced toughness of ultra-fine sulphoaluminate cement-based hybrid grouting materials by incorporatingin-situpolymerization of acrylamide[J]. Constr Build Mater, 2021, 292: 123421.
[8] [8] LIU Q, LU Z Y, HU X S, et al. A mechanical strong polymer-cement composite fabricated by in situ polymerization within the cement matrix[J]. J Bulid Eng, 2021, 42: 103048.
[9] [9] LIU Q, LU Z Y, XU J Y, et al. Insight into the in situ copolymerization of monomers on cement hydration and the mechanical performance of cement paste[J]. J Sustainable Cem-Based Mater, 2022, 12(6): 736-750.
[10] [10] ALTHOEY F, ZAID O, MARTNEZ-GARCA R, et al. Impact of Nano-silica on the hydration, strength, durability, and microstructural properties of concrete: A state-of-the-art review[J]. Case Stud Constr Mater, 2023, 18: e01997.
[11] [11] ZARAGOZA J, FUKUOKA S, KRAUS M, et al. Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites[J]. Nanomaterials, 2018, 8(11): 882.
[12] [12] SUN F F, LIN M Q, DONG Z X, et al. Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids[J]. J Colloid Interface Sci, 2015, 458: 45-52.
[13] [13] SHAO L J, FENG P, LIU Q, et al.In-situpolymerization-modified cement composites: A critical review[J]. Constr Build Mater, 2024, 449: 138294.
[14] [14] CHEN B M, QIAO G, HOU D S, et al. Cement-based material modified byin-situpolymerization: From experiments to molecular dynamics investigation[J]. Compos Part B-Eng, 2020, 194: 108036.
[15] [15] ZHOU Z, LI Z, GAO X, et al. Study on properties of Portland cement-sulfoaluminate cement-based grouting materials modified byin-situ polymerization of calcium acrylate[J]. Constr Build Mater, 2023, 409: 134087.
[16] [16] LI H, XIAO H-G, YUAN J, et al. Microstructure of cement mortar with nano-particles[J]. Compos Part B-Eng, 2004, 35(2): 185-189.
[17] [17] FENG S, XIAO H, GUAN S. Influence of Nano-SiO2 and Nano-TiO2 on properties and microstructure of cement-based materials[J]. Constr Build Mater, 2025, 459: 139805.
[18] [18] PAUL S C, VAN ROOYEN A S, VAN ZIJL G P A G, et al. Properties of cement-based composites using nanoparticles: A comprehensive review[J]. Constr Build Mater, 2018, 189: 1019-1034.
[19] [19] LIU Q, LIU W J, LI Z J, et al. Ultra-lightweight cement composites with excellent flexural strength, thermal insulation and water resistance achieved by establishing interpenetrating network[J]. Constr Build Mater, 2020, 250: 118923.
[20] [20] MOHONA T M, GUPTA A, MASUD A, et al. Aggregation behavior of inorganic 2D nanomaterials beyond graphene: Insights from molecular modeling and modified DLVO theory[J]. Environ Sci Technol, 2019, 53(8): 4161-4172.
[21] [21] LIU X, FENG P, SHU X, et al. Effects of highly dispersed nano-SiO2 on the microstructure development of cement pastes[J]. Mater Struct, 2019, 53(1): 4.
[22] [22] YANG H B, MONASTERIO M, ZHENG D P, et al. Effects of nano silica on the properties of cement-based materials: A comprehensive review[J]. Constr Build Mater, 2021, 282: 122715.
[23] [23] YIN B, HUA X L, QI D M, et al. Performance cement-based composite obtained byin-situgrowth of organic-inorganic frameworks during the cement hydration[J]. Constr Build Mater, 2022, 336: 127533.
[24] [24] ZHANG M H, ISLAM J. Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag[J]. Constr Build Mater, 2012, 29: 573-580.
[25] [25] ZHANG A, YANG W C, GE Y, et al. Effects of nano-SiO2 and nano-Al2O3 on mechanical and durability properties of cement-based materials: A comparative study[J]. J Bulid Eng, 2021, 34: 101936.
[26] [26] SHAO L J, LIU Z L, LIU Q, et al. A new strategy to enhance 3D printability of cement-based materials:In-situpolymerization[J]. Addit Manuf, 2024, 89: 104299.
[27] [27] KONG X M, EMMERLING S, PAKUSCH J, et al. Retardation effect of styrene-acrylate copolymer latexes on cement hydration[J]. Cem Concr Res, 2015, 75: 23-41.
[28] [28] SALVADOR R P, CAVALARO S H P, SEGURA I, et al. Early age hydration of cement pastes with alkaline and alkali-free accelerators for sprayed concrete[J]. Constr and Build Mater, 2016, 111: 386-398.
[29] [29] BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cem Concr Res, 2011, 41(12): 1208-1223.
[30] [30] FENG P, CHANG H L, LIU X, et al. The significance of dispersion of nano-SiO2 on early age hydration of cement pastes[J]. Mater Des, 2020, 186: 108320.
[31] [31] WEI Q H, WANG Y E, WANG S Z, et al. Investigating the properties and interaction mechanism of nano-silica in polyvinyl alcohol/ polyacrylamide blends at an atomic level[J]. J Mech Behav Biomed Mater, 2017, 75: 529-537.
[32] [32] MENG X H, QIAO Y, DO C, et al. Hysteresis‐free nanoparticle‐ reinforced hydrogels[J]. Adv Mater, 2022, 34(7): 2108243.
[33] [33] MOUNANGA P, KHELIDJ A, LOUKILI A, et al. Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach[J]. Cem Concr Res, 2004, 34(2): 255-265.
[34] [34] LAND G, STEPHAN D. The influence of nano-silica on the hydration of ordinary Portland cement[J]. J Mater Sci, 2011, 47(2): 1011-1017.
[35] [35] LIU Q, MING X, XU J, et al. Robust cement composite with low hydration temperature and high mechanical performance achieved by Field's metal and acrylic acid-acrylamide copolymer[J]. Constr Build Mater, 2023, 387: 131655.
[36] [36] XU C, DAI Y, PENG Y, et al. Multi-scale structure of in-situ polymerized cementitious composites with improved flowability, strength, deformability and anti-permeability[J]. Compos Part B-Eng, 2022, 245: 110222.
[38] [38] KONG D, DU X, WEI S, et al. Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials[J]. Constr Build Mater, 2012, 37: 707-715.
[39] [39] WEN S Y, CAO M L, LIU G Z. Mechanical properties and micro-mechanism of seawater cementitious materials reinforced by in-situ polymerization[J]. Constr Build Mater, 2024, 449: 138412.
Get Citation
Copy Citation Text
YU Zhenqi, LIU Xin, SHAO Lijing, XIE Hui, ZHANG Yi, WANG Haochuan, FENG Pan. Nano-Silica Modified In-situ Polymerized Cementitious Materials (iPMCM): Properties Enhancement and Strengthening Mechanism[J]. Journal of the Chinese Ceramic Society, 2025, 53(8): 2340
Category:
Received: Dec. 21, 2024
Accepted: Sep. 5, 2025
Published Online: Sep. 5, 2025
The Author Email: FENG Pan (pan.feng@seu.edu.cn)