Laser & Optoelectronics Progress, Volume. 61, Issue 16, 1611003(2024)

Computational Spectral Imaging: Optical Encoding and Algorithm Decoding (Invited)

Jiaqi Guo1、†, Benxuan Fan1、†, Xin Liu2, Yuhui Liu2, Xuquan Wang1,3, Yujie Xing1,3, Zhanshan Wang1,3, Xiong Dun1,3、*, Yifan Peng2、**, and Xinbin Cheng1,3
Author Affiliations
  • 1School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
  • 3Institute of Precision Optical Engineering Tongji University, MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
  • show less
    Figures & Tables(15)
    Main components and operating principle of computational imaging systems
    A discretization example for the spectral image and optical coding
    Optical systems and coding illustrations for single pixel camera. (a) Plain SPC spectral imaging; (b) CHISSS
    Illustration of coded aperture snapshot spectral imagers. (a) DD-CASSI; (b) SD-CASSI
    Illustration of the dual-camera compressive hyperspectral imager
    Illustration for 3D coded aperture imagers. (a) CCA;(b) DCSI; (c) SSCSI
    Example of point spread function encoding system structure
    Representative color filter array and spectral filter array
    Acquisition process of multi-channel images
    Optical systems for spatial duplicating-based encoding. (a) Notch filters have extremely narrow stopband and are able to obtain spectral images with very high spectral resolution in corresponding bands; (b) using FPR arrays with varying thickness to achieve different SRFs, and combining them with lens arrays for spatial replication to capture multi-channel images
    Simple illustrations for architectures of four end-to-end reconstruction neural networks. (a) Simple convolutional neural network; (b) multiscale CNN; (c) generative adversarial network; (d) self-attention operation
    • Table 1. Summary of optical encoding methods

      View table

      Table 1. Summary of optical encoding methods

      CategoryRepresentative workAcquisition schemeEnabling deviceDesign method
      Image plane coding-SPCRef.[31],CHISSS25Multiple exposureDMD,gratingRandom coding
      Image plane coding-CASSISD-CASSI1335],DD-CASSI3437Direct imagingDisperser,coded aperture(DMD)Random coding
      Image plane coding-multiframe codingRef.[151638Multiple exposureDisperser,piezo-electric ceramicsRandom coding
      Ref.[39Multiple exposureDisperser,piezo-electric ceramicsOptimized coding function
      Ref.[3628Multiple exposureDisperser,DMDRandom coding
      DCCHI40-41Dual-camera

      Splitter,disperser,

      coded aperture

      Random coding
      Image plane coding-3D codingRef.[42-43Direct imagingDisperser,CCAOptimized coding function
      Ref.[28Multiple exposureDMD,filterRandom coding
      DCSI29Multiple exposureDMD,grating,LCoSRandom coding
      SSCSI27Direct imagingGrating,coded ape-rtureRandom coding
      PSF coding,scattering codingRef.[48Direct imagingScattering mediumRandom PSF
      PSF coding-dispersion codingRef.[4750Direct imagingDOERandom DOE surface
      Ref.[51Direct imagingDisperserDispersive PSF
      PSF coding-diffraction codingRef.[52-53Direct imagingDOEManually designed DOE
      Ref.[4655Direct imagingDOEDeeply learned DOE
      SRF coding-fixed SRFCS-MUSI762560Multiple exposurePolarizer,liquid crystalFixed SRF
      Ref.[65Multiple exposureLiquid crystal,metasurface
      Ref.[69Spatially duplicatingNotch filter
      Ref.[61Spatially duplicatingFPR array
      SRF coding-random SRFRef.[6277Direct imagingMetasurfaceRandom SRF
      SRF coding-optimized SRFRef.[70Direct imaging,Spatially duplicatingThin filmDeeply learned SRF
      BEST72-73Direct imagingMetasurface,thin film
      Ref.[75Multiple exposureThin film
      Ref.[74Direct imagingSuperposition FPR
      Image plane coding,SRF codingSCCSI26Direct imagingDisperser,CCA-SFARandom coding
      Ref.[44Multiple exposureLCTF,DMDRandom coding,fixed SRF
      PSF coding,SRF codingDiffuserCam49Direct imagingScattering medium,SFARandom PSF,fixed SRF
    • Table 2. Summary of popular datasets of spectral images

      View table

      Table 2. Summary of popular datasets of spectral images

      DatasetSpectrum /nmStep /nmDimensionSizeCamera modelIllumination
      CAVE108400‒70010512×51232VariSpec Liquid Crystal Tunable Filter,Apogee Alta U260CIE Standard Illuminant D65
      Harvard109420‒720101392×104075Commercial hyperspectral camera with LCTF(Nuance FX,CRI Inc)Natural Daylight Lighting,Artificial Mixed Lighting
      NUS104400‒700101312×95066Specim PFD-CL-65-V10ENatural Light Source,Artificial Broadband Light Sources with Various Color Temperatures
      ICVL18400‒10001.251392×1300200Specim PS Kappa DX4,Rotary StageNatural Light Source
      400‒70010
      KAIST93420‒720102704×337630GS3- U3-91S6M-CXenon Lamp
      NTIRE2018110400‒700101392×1300256Specim PS Kappa DX4Natural Light Source
      NTIRE2020106400‒70010482×512460Specim IQNatural Light Source
      C2H-Data111374.1‒988.14.61392×1650697GaiaField SystemTungsten Halogen Lamp
      450‒74010
      KAUST-HS112400‒100010512×512400Specim IQNatural Light Source
      NTIRE2022107400‒70010482×5121000Specim IQNatural Light Source
    • Table 3. Summary of spectral reconstruction algorithms based on physical model and prior knowledge

      View table

      Table 3. Summary of spectral reconstruction algorithms based on physical model and prior knowledge

      CategoryAlgorithmRelated workPrior type

      Sparse

      approximation

      OMPRef.[8118Γθ=θ0
      GPSRRef.[132638Γθ=θ1
      TVrestrictionGAP-TVRef.[14Γ˜I=ΓaTVI
      TwISTRef.[163640Γ˜I=ΓiTVI
      Low rank structureADMMRef.[8889ΓI=iZi*
      Tensor decompositionADMMRef.[9192Restriction of tensor decomposition
      Learned PriorADMMRef.[93Learned auto-encoder
      SGDRef.[9495Restriction of tensor decomposition,low-dimensional manifold
      Unrolled HQSRef.[19100Neural network
      Unrolled ADMMRef.[9698Neural network
      Unrolled GAPRef.[97Neural network
    • Table 4. Summary of end-to-end spectral reconstruction methods

      View table

      Table 4. Summary of end-to-end spectral reconstruction methods

      CategoryRelated workOptical systemKey ingredient
      CNNHSCNN20RGB/CASSI
      HCSNN+96RGBResidual connection,dense connection
      HyperReconNet104CASSI2D-3D convolution
      BTR-Net130SRF codedFunctional sub-networks
      Wang et al.62SRF codedResidual connection

      Multiscale

      CNN

      Galliani et al.79RGBDense connection
      Yan et al.110RGBPixel shuffle
      C2H-Net111RGBExtra class/location information
      DeepCubeNet104SRF coded
      Baek et al.46PSF coded
      GANAlvarez et al.97RGB
      R2H-GAN113RGBExtra spectral discriminator
      Lambda-Net112CASSISelf attention

      Attention-based

      networks

      HRNet115RGBDense connection,self attention
      AWAN116RGBSelf attention,SRF-aware
      HDRAN117RGB2D-3D self attention,restriction of tensor decomposition
      HD-Net118CASSIFrequency domain supervision
      TSA-Net119CASSIIndependent 3D attention
      SDNet120SRF codedUnsupervised training by resampling
      GMSR121RGBMamba architecture
      TransformerMST122CASSICoding function-aware
      CST123CASSIClustering,coarse-to-fine reconstruction
      ST++124RGBCoarse-to-fine reconstruction
      TCSSA125RGBConvolutional spectral self attention
    Tools

    Get Citation

    Copy Citation Text

    Jiaqi Guo, Benxuan Fan, Xin Liu, Yuhui Liu, Xuquan Wang, Yujie Xing, Zhanshan Wang, Xiong Dun, Yifan Peng, Xinbin Cheng. Computational Spectral Imaging: Optical Encoding and Algorithm Decoding (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1611003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: May. 31, 2024

    Accepted: Jun. 27, 2024

    Published Online: Aug. 12, 2024

    The Author Email: Xiong Dun (dunx@tongji.edu.cn), Yifan Peng (evanpeng@hku.hk)

    DOI:10.3788/LOP241397

    CSTR:32186.14.LOP241397

    Topics