Laser & Optoelectronics Progress, Volume. 61, Issue 11, 1116011(2024)
Research Progress in Nonlinear Optics of Thin-Film Lithium Niobate Micro/nano Structures (Invited)
[2] Lei F C, Ward J M, Romagnoli P et al. Polarization-controlled cavity input-output relations[J]. Physical Review Letters, 124, 103902(2020).
[6] Azeem F, Trainor L S, Gao A et al. Ultra-low threshold titanium-doped sapphire whispering-gallery laser[J]. Advanced Optical Materials, 10, 2102137(2022).
[7] Wang Y B, Holguín-Lerma J A, Vezzoli M et al. Photonic-circuit-integrated titanium: sapphire laser[J]. Nature Photonics, 17, 338-345(2023).
[8] Li H Q, Wang Z C, Wang L et al. Optically pumped milliwatt Whispering-Gallery microcavity laser[J]. Light: Science & Applications, 12, 223(2023).
[9] Zhang J X, Pan B C, Liu W X et al. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity[J]. Optics Express, 30, 20839-20846(2022).
[10] Jia Y C, Wu J W, Sun X L et al. Integrated photonics based on rare-earth ion-doped thin-film lithium niobate[J]. Laser & Photonics Reviews, 16, 2200059(2022).
[11] Logan A D, Shree S, Chakravarthi S et al. Triply-resonant sum frequency conversion with gallium phosphide ring resonators[J]. Optics Express, 31, 1516-1531(2023).
[12] Zhuang R, He J, Qi Y et al. High-Q thin-film lithium niobate microrings fabricated with wet etching[J]. Advanced Materials, 35, e2208113(2023).
[14] Huang H J, Balčytis A, Dubey A et al. Spatio-temporal isolator in lithium niobate on insulator[J]. Opto-Electronic Science, 2, 220022(2023).
[16] Kim J, Kuzyk M C, Han K W et al. Non-reciprocal Brillouin scattering induced transparency[J]. Nature Physics, 11, 275-280(2015).
[17] Jiang X F, Wang M, Kuzyk M C et al. Chip-based silica microspheres for cavity optomechanics[J]. Optics Express, 23, 27260-27265(2015).
[18] Kim S, Taylor J M, Bahl G. Dynamic suppression of Rayleigh backscattering in dielectric resonators[J]. Optica, 6, 1016-1022(2019).
[19] Clarke J, Neveu P, Khosla K E et al. Cavity quantum optomechanical nonlinearities and position measurement beyond the breakdown of the linearized approximation[J]. Physical Review Letters, 131, 053601(2023).
[20] Cai L, Pan J Y, Zhao Y et al. Whispering gallery mode optical microresonators: structures and sensing applications[J]. Physica Status Solidi Applied Research, 217, 1900825(2020).
[21] Lai Y H, Lu Y K, Suh M G et al. Observation of the exceptional-point-enhanced Sagnac effect[J]. Nature, 576, 65-69(2019).
[23] Wang X F, Wei X Y, Pu D et al. Single-electron detection utilizing coupled nonlinear microresonators[J]. Microsystems & Nanoengineering, 6, 78(2020).
[24] Saetchnikov A V, Tcherniavskaia E A, Saetchnikov V A et al. Intelligent optical microresonator imaging sensor for early stage classification of dynamical variations[J]. Advanced Photonics Research, 2, 2170040(2021).
[25] Ren D D, Dong C, Addamane S J et al. High-quality microresonators in the longwave infrared based on native germanium[J]. Nature Communications, 13, 5727(2022).
[28] Wang T, Hu Y Q, Du C G et al. Multiple EIT and EIA in optical microresonators[J]. Optics Express, 27, 7344-7353(2019).
[29] Wang C Q, Jiang X F, Zhao G M et al. Electromagnetically induced transparency at a chiral exceptional point[J]. Nature Physics, 16, 334-340(2020).
[30] Zhang F X, Feng Y M, Chen X F et al. Synthetic anti-PT symmetry in a single microcavity[J]. Physical Review Letters, 124, 053901(2020).
[31] Xie R R, Qin G Q, Zhang H et al. Phase-controlled dual-wavelength resonance in a self-coupling whispering-gallery-mode microcavity[J]. Optics Letters, 46, 773-776(2021).
[36] Xu X Y, Chen P C, Ma T X et al. Large field-of-view nonlinear holography in lithium niobate[J]. Nano Letters, 24, 1303-1308(2024).
[39] Watanabe K, Takigawa R. Fabrication of heterogeneous LNOI photonics wafers through room temperature wafer bonding using activated Si atomic layer of LiNbO3, glass, and sapphire[J]. Applied Surface Science, 620, 156666(2023).
[42] Churaev M, Wang R N, Riedhauser A et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform[J]. Nature Communications, 14, 3499(2023).
[53] He Y, Liang H X, Luo R et al. Dispersion engineered high quality lithium niobate microring resonators[J]. Optics Express, 26, 16315-16322(2018).
[55] Liu S J, Zheng Y L, Fang Z W et al. Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes[J]. Optics Letters, 44, 1456-1459(2019).
[56] Wang T J, Peng G L, Chan M Y et al. On-chip optical microresonators with high electro-optic tuning efficiency[J]. Journal of Lightwave Technology, 38, 1851-1857(2020).
[58] Li C T, Guan J L, Lin J T et al. Ultra-high Q lithium niobate microring monolithically fabricated by photolithography assisted chemo-mechanical etching[J]. Optics Express, 31, 31556-31562(2023).
[59] Feng H K, Ge T, Guo X Q et al. Integrated lithium niobate microwave photonic processing engine[J]. Nature, 627, 80-87(2024).
[60] Shi J K, Ye Z L, Lv M C et al. Reduced material loss caused by electron beam lithography in thin-film lithium niobate through post-process annealing[J]. Optical Materials, 149, 115049(2024).
[61] Guarino A, Poberaj G, Rezzonico D et al. Electro–optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 1, 407-410(2007).
[63] Pearton S J, Norton D P. Dry etching of electronic oxides, polymers, and semiconductors[J]. Plasma Processes and Polymers, 2, 16-37(2005).
[71] Desiatov B, Shams-Ansari A, Zhang M et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J]. Optica, 6, 380-384(2019).
[85] Huang T, Ma Y, Fang Z W et al. Wavelength-tunable narrow-linewidth laser diode based on self-injection locking with a high-Q lithium niobate microring resonator[J]. Nanomaterials, 13, 948(2023).
[91] Ge L C, Jiang H W, Liu Y A et al. Quality improvement and mode evolution of high-Q lithium niobate micro-disk induced by “light annealing”[J]. Optical Materials Express, 9, 1632(2019).
[92] Wang M, Fang Z W, Lin J T et al. Integrated active lithium niobate photonic devices[J]. Japanese Journal of Applied Physics, 62, SC0801(2023).
[94] Ahmed A N R, Shi S Y, Mercante A J et al. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform[J]. Optics Express, 27, 30741-30751(2019).
[96] Wagner M. Probing Pauli blocking factors in quantum pumps with broken time-reversal symmetry[J]. Physical Review Letters, 85, 174-177(2000).
[97] Jiang W C, Lin Q. Chip-scale cavity optomechanics in lithium niobate[J]. Scientific Reports, 6, 36920(2016).
[98] Zhao G H, Lin J T, Fu B T et al. Integrated multicolor Raman microlasers with ultra-low pump levels in single high-Q lithium niobate microdisks[J]. Laser & Photonics Reviews, 2301328(2024).
[101] Pan Y, Sun S H, Xu M Y et al. Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators[C](2020).
[107] Kar A, Bahadori M, Gong S B et al. Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate[J]. Optics Express, 27, 15856-15867(2019).
[112] Zhang T, Li J Y, Li M X et al. Design and optimization of a high-efficiency 3D multi-tip edge coupler based lithium niobate on insulator platform[J]. Photonics, 11, 134(2024).
[114] Schaufele R F, Weber M J. Raman scattering by lithium niobate[J]. Physical Review, 152, 705-708(1966).
[115] Chen J Y, Sua Y M, Fan H et al. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics[J]. OSA Continuum, 1, 229-242(2018).
[116] Luo R, He Y, Liang H X et al. Optical parametric generation in a lithium niobate microring with modal phase matching[J]. Physical Review Applied, 11, 034026(2019).
[117] Lin J T, Xu Y X, Ni J L et al. Phase matched second harmonic generation in an on-chip LiNbO3 microresonator[J]. Physical Review Applied, 6, 014002(2016).
[118] Luo R, Jiang H W, Rogers S et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator[J]. Optics Express, 25, 24531-24539(2017).
[119] Wolf R, Jia Y C, Bonaus S et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries[J]. Optica, 5, 872-875(2018).
[122] Baida F I, Robayo Yepes J J, Ndao A. Giant second harmonic generation in etch-less lithium niobate thin film[J]. Journal of Applied Physics, 133, 124501(2023).
[124] Wang L, Li L Q, Zhang X T et al. Type I phase matching in thin film of lithium niobate on insulator[J]. Results in Physics, 16, 103011(2020).
[128] Sergeyev A, Geiss R, Solntsev A S et al. Enhancing guided second-harmonic light in lithium niobate nanowires[J]. ACS Photonics, 2, 687-691(2015).
[129] Volkovskaya I, Xu L, Huang L J et al. Multipolar second-harmonic generation from high-Q quasi-BIC states in subwavelength resonators[J]. Nanophotonics, 9, 156(2020).
[130] Huang Z J, Wang M J, Li Y et al. Highly efficient second harmonic generation of thin film lithium niobate nanograting near bound states in the continuum[J]. Nanotechnology, 32, 325207(2021).
[131] Li H W, Liu W X, Chen B et al. Efficient second harmonic generation in thin-film lithium niobate waveguides[C](2023).
[132] Li X S, Ma J T, Liu S F et al. Efficient second harmonic generation by harnessing bound states in the continuum in semi-nonlinear etchless lithium niobate waveguides[J]. Light: Science & Applications, 11, 317(2022).
[134] Lin G P, Fürst J U, Strekalov D V et al. Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators[J]. Applied Physics Letters, 103, 181107(2013).
[135] Frank I W, Moore J, Douglas J K et al. Entangled photon generation in lithium niobate microdisk resonators through spontaneous parametric down conversion[C], SM2E.6(2016).
[137] Hamrouni M, Jankowski M, Hwang A et al. Efficient parametric downconversion by gain-trapped opa in thin-film lithium niobate[C], W1A.4(2023).
[138] Lu J J, Al Sayem A, Gong Z et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator[J]. Optica, 8, 539-544(2021).
[139] Zhang J H, Ma J Y, Parry M et al. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces[J]. Science Advances, 8, eabq4240(2022).
[140] Stokowski H S, McKenna T P, Ansari V et al. Optical parametric oscillator in thin-film lithium niobate with a 130 µW threshold[C], SM4L.6(2021).
[142] Zhao Y J, Liu X Y, Yvind K et al. Widely-tunable, multi-band Raman laser based on dispersion-managed thin-film lithium niobate microring resonators[J]. Communications Physics, 6, 350(2023).
[143] Guan J L, Lin J T, Gao R H et al. Low-threshold anti-stokes Raman microlaser on thin-film lithium niobate chip[J]. Materials, 17, 1042(2024).
[144] Rodrigues C C, Zurita R O, Alegre T P M et al. Stimulated Brillouin scattering by surface acoustic waves in lithium niobate waveguides[J]. Journal of the Optical Society of America B, 40, D56-D63(2023).
[145] Wang W Y, Yu Y D, Li Y F et al. Tailorable Brillouin light scattering in a lithium niobate waveguide[J]. Applied Sciences, 11, 8390(2021).
[146] Zheng Y L, Chen X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics X, 6, 1889402(2021).
[147] Sjaardema T, Malinowski M, Rao A et al. Low-harmonic generation in cascaded thin-film lithium niobate waveguides[J]. Advanced Photonics Research, 3, 2100262(2022).
[148] Wu X, Zhang L, Hao Z Z et al. Efficient cascaded third-harmonic generation in sampled-grating periodically-poled lithium niobate waveguides[J]. Laser & Photonics Reviews, 2300953(2024).
[149] Elkus B S, Abdelsalam K, Fathpour S et al. Quantum-correlated photon-pair generation via cascaded nonlinearity in a thin-film lithium-niobate waveguide[C], LM1F.1(2020).
[150] Zhang Z C, Yuan C Z, Shen S et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes[J]. NPJ Quantum Information, 7, 123(2021).
[151] Liu S J, Zheng Y L, Chen X F. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk[J]. Optics Letters, 42, 3626-3629(2017).
[152] Wang M, Yao N, Wu R B et al. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules[J]. New Journal of Physics, 22, 073030(2020).
[153] Rodriguez A, Soljacic M, Joannopoulos J D et al. χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities[J]. Optics Express, 15, 7303-7318(2007).
[154] Wang X N, Jiao X F, Wang B et al. Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips[J]. NPJ Quantum Information, 9, 38(2023).
[155] Sund P I, Lomonte E, Paesani S et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter[J]. Science Advances, 9, eadg7268(2023).
[156] Yan C L, Huang Y L, Wang D Y et al. Tuneable sum-frequency generation and spectral broadening based on proton-exchanged thin-film lithium niobate ridge waveguide[J]. ACS Photonics, 11, 1173-1180(2024).
[157] Hao Z Z, Zhang L, Gao A et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip[J]. Science China Physics, Mechanics & Astronomy, 61, 114211(2018).
[160] Ye X N, Liu S J, Chen Y P et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching[J]. Optics Letters, 45, 523-526(2020).
[161] Yuan T G, Wu J W, Liu Y A et al. Chip-scale spontaneous quasi-phase matched second harmonic generation in a micro-racetrack resonator[J]. Science China Physics, Mechanics & Astronomy, 66, 284211(2023).
[163] Jia R Z, Liu M H, Liu J M et al. A theoretical study on mid-infrared difference frequency generation based on periodically poled thin-film LiNbO3[J]. Photonics, 10, 478(2023).
[164] Yang J W, Wang C. Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform[J]. Optics Express, 29, 16477-16486(2021).
[165] Carletti L, McDonnell C, Arregui Leon U et al. Nonlinear THz generation through optical rectification enhanced by phonon–polaritons in lithium niobate thin films[J]. ACS Photonics, 10, 3419-3425(2023).
[166] Furst J U, Strekalov D V, Elser D et al. Low-threshold optical parametric oscillations in a whispering gallery mode resonator[C](2011).
[167] Zilli A, Sultanov V, Poloczek M et al. Spontaneous parametric down-conversion beaming from a lithium niobate nanostructured resonator[C](2023).
[168] Hanh Duong N M, Maeder A, Saerens G et al. Non-phase-matched spontaneous parametric down-conversion from lithium niobate thin films[C](2021).
[169] Henari F Z, Cazzini K, El Akkari F et al. Beam waist changes in lithium niobate during Z-scan measurement[J]. Journal of Applied Physics, 78, 1373-1375(1995).
[170] Choubey R K, Trivedi R, Das M et al. Growth and study of nonlinear refraction and absorption in Mg doped LiNbO3 single crystals[J]. Journal of Crystal Growth, 311, 2597-2601(2009).
[171] Li H P, Zhou F, Zhang X J et al. Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photonabsorption[J]. Applied Physics B, 64, 659-662(1997).
[172] Benabdelghani I, Tóth G, Krizsán G et al. Three-photon and four-photon absorption in lithium niobate measured by the Z-scan technique[J]. Optics Express, 32, 7030-7043(2024).
[173] Wang Y H, Yu X X, Liu F et al. Nonlinear refraction of lithium niobate crystal doped with different metal nanoparticles[J]. Materials Letters, 123, 35-37(2014).
[174] Wang Y Y, Niu Y X, Wang G et al. Enhanced nonlinear optical properties of LiNbO3 crystal embedded with CuZn alloy nanoparticles by ion implantation[J]. Journal of Alloys and Compounds, 778, 691-698(2019).
[175] Kozub A L, Gerstmann U, Schmidt W G et al. Third-order susceptibility of lithium niobate: influence of polarons and bipolarons[J]. Physica Status Solidi B, 260, 2200453(2023).
[176] Tumuluri A, Bharati M S S, Rao S V et al. Structural, optical and femtosecond third-order nonlinear optical properties of LiNbO3 thin films[J]. Materials Research Bulletin, 94, 342-351(2017).
[177] Wang Q Q, Shi J, Yang B F et al. A Z-scan study of LiNbO3 thin films[J]. Chinese Physics Letters, 19, 677-679(2002).
[178] Chen Y L, Liu S W, Wang D D et al. Measurement of laser-induced refractive index change of inverted ferroelectric domain LiNbO3[J]. Applied Optics, 46, 7693-7696(2007).
[179] Yin L Y, Jiang J, Huo Y Y et al. Third-order optical nonlinearity of niobium-rich lithium niobate thin films[J]. Optical Materials, 114, 110914(2021).
[182] Yan X S, Xue M, Yuan T G et al. Cascaded degenerate four-wave mixing generation in thin-film lithium tantalate microdisk cavity[J]. Physical Review Applied, 21, 024033(2024).
[184] Liu Y A, Yan X S, Wu J W et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 64, 234262(2020).
[185] Luo Q, Yang C, Zhang R et al. On-chip erbium-doped lithium niobate microring lasers[J]. Optics Letters, 46, 3275-3278(2021).
[189] Pak D, An H, Nandi A et al. Ytterbium-implanted photonic resonators based on thin film lithium niobate[J]. Journal of Applied Physics, 128, 084302(2020).
[191] Wang S H, Yang L K, Cheng R S et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics[J]. Applied Physics Letters, 116, 151103(2020).
[193] Yang L K, Wang S H, Shen M H et al. Photonic integration of Er3+∶Y2SiO5 with thin-film lithium niobate by flip chip bonding[J]. Optics Express, 29, 15497-15504(2021).
[194] Lu T, Yang L, Carmon T et al. A narrow-linewidth on-chip toroid Raman laser[J]. IEEE Journal of Quantum Electronics, 47, 320-326(2011).
[195] He L N, Ozdemir S K, Zhu J G et al. Detecting single viruses and nanoparticles using whispering gallery microlasers[J]. Nature Nanotechnology, 6, 428-432(2011).
[197] Rong H S, Jones R, Liu A S et al. A continuous-wave Raman silicon laser[J]. Nature, 433, 725-728(2005).
[198] Lu T, Yang L, van Loon R V A et al. On-chip green silica upconversion microlaser[J]. Optics Letters, 34, 482-484(2009).
[201] Goldberg P, Milonni P W, Sundaram B. Theory of the fundamental laser linewidth. II[J]. Physical Review A, 44, 4556-4563(1991).
[202] Yang L, Armani D K, Vahala K J. Fiber-coupled erbium microlasers on a chip[J]. Applied Physics Letters, 83, 825-826(2003).
[205] Zhou Y, Wang Z, Fang Z W et al. On-chip microdisk laser on Yb3+-doped thin-film lithium niobate[J]. Optics Letters, 46, 5651-5654(2021).
[206] Luo Q, Yang C, Hao Z Z et al. On-chip erbium-ytterbium-co-doped lithium niobate microdisk laser with an ultralow threshold[J]. Optics Letters, 48, 3447-3450(2023).
[207] Guo Q, Gutierrez B K, Sekine R et al. Ultrafast mode-locked laser in nanophotonic lithium niobate[J]. Science, 382, 708-713(2023).
[209] Morin T J, Peters J, Li M X et al. Coprocessed heterogeneous near-infrared lasers on thin-film lithium niobate[J]. Optics Letters, 49, 1197-1200(2024).
[214] Papp S B, Beha K, Del’Haye P et al. Microresonator frequency comb optical clock[J]. Optica, 1, 10-14(2014).
[216] Liu J Q, Lucas E, Raja A S et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 14, 486-491(2020).
[222] Herr T, Brasch V, Jost J D et al. Mode spectrum and temporal soliton formation in optical microresonators[J]. Physical Review Letters, 113, 123901(2014).
[223] Fujii S, Tanabe T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation[J]. Nanophotonics, 9, 1087-1104(2020).
[225] Fang Z W, Luo H P, Lin J T et al. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk[J]. Optics Letters, 44, 5953-5956(2019).
[227] Gong Z, Liu X W, Xu Y T et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators[J]. Optics Letters, 44, 3182-3185(2019).
[230] Yu M J, Okawachi Y, Cheng R et al. Raman lasing and soliton mode-locking in lithium niobate microresonators[J]. Light: Science & Applications, 9, 9(2020).
[234] Hu Y W, Yu M J, Buscaino B et al. High-efficiency and broadband electro-optic frequency combs using coupled lithium-niobate microresonators[C], STu2G.2(2021).
[235] Chen G Y, Yu Y, Zhang X L. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection[J]. Optics Letters, 41, 3543-3546(2016).
[236] Chen L, Wood M G, Reano R M. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes[J]. Optics Express, 21, 27003-27010(2013).
[238] Chen L, Xu Q, Wood M G et al. Hybrid silicon and lithium niobate electro-optical ring modulator[J]. Optica, 1, 112-118(2014).
[239] Wang M, Xu Y X, Fang Z W et al. On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes[J]. Optics Express, 25, 124-129(2017).
[240] Mahmoud M, Cai L T, Bottenfield C et al. Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform[J]. IEEE Photonics Journal, 10, 2797244(2018).
[241] Wang Z, Wu C H, Fang Z W et al. High-quality-factor optical microresonators fabricated on lithium niobate thin film with an electro-optical tuning range spanning over one free spectral range[J]. Chinese Optics Letters, 19, 060002(2021).
[244] Bahadori M, Goddard L L, Gong S B. Fundamental electro-optic limitations of thin-film lithium niobate microring modulators[J]. Optics Express, 28, 13731-13749(2020).
[245] Xu M Y, He M B, Zhu Y T et al. Integrated thin film lithium niobate Fabry-Perot modulator[J]. Chinese Optics Letters, 19, 060003(2021).
[246] Pan B C, Liu H X, Xu H C et al. Ultra-compact lithium niobate microcavity electro-optic modulator beyond 110 GHz[J]. Chip, 1, 100029(2022).
[247] Gu L L, Jiang W, Chen X N et al. High speed silicon photonic crystal waveguide modulator for low voltage operation[J]. Applied Physics Letters, 90, 071105(2007).
[249] Roussey M, Bernal M P, Courjal N et al. Experimental and theoretical characterization of a lithium niobate photonic crystal[J]. Applied Physics Letters, 87, 241101(2005).
[250] Roussey M, Bernal M P, Courjal N et al. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons[J]. Applied Physics Letters, 89, 241110(2006).
[252] Diziain S, Geiss R, Zilk M et al. Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity[J]. Applied Physics Letters, 103, 051117(2013).
[253] Cai L T, Han H P, Zhang S M et al. Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator[J]. Optics Letters, 39, 2094-2096(2014).
[254] Geiss R, Diziain S, Steinert M et al. Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching[J]. Physica Status Solidi (a), 211, 2421-2425(2014).
[255] Liang H X, Luo R, He Y et al. High-quality lithium niobate photonic crystal nanocavities[J]. Optica, 4, 1251-1258(2017).
[256] Li M X, Liang H X, Luo R et al. High-Q 2D lithium niobate photonic crystal slab nanoresonators[J]. Laser & Photonics Reviews, 13, 1800228(2019).
[258] Liu X C, Xiong B, Sun C Z et al. Thin film lithium niobate electro-optic modulator based on a slow wave structure[C], C4C_3(2020).
[259] Qi Y F, Zhang Z, Jia W H et al. Design of ultracompact high-speed-integrated lithium-niobate periodic dielectric waveguide modulator[J]. Advanced Photonics Research, 3, 2270027(2022).
[260] Arab Juneghani F, Gholipour Vazimali M, Zhao J et al. Thin-film lithium niobate optical modulators with an extrapolated bandwidth of 170 GHz[J]. Advanced Photonics Research, 4, 2200216(2023).
[261] Ghoname A O, Hassanien A E, Chow E et al. Spiral waveguide Bragg grating modulator on thin-film Z-cut lithium niobate[J]. Journal of the Optical Society of America B Optical Physics, 40, D38-D43(2023).
[262] Shen M H, Xie J C, Zou C L et al. High frequency lithium niobate film-thickness-mode optomechanical resonator[J]. Applied Physics Letters, 117, 131104(2020).
[265] Soltani M, Zhang M, Ryan C et al. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators[J]. Physical Review A, 96, 043808(2017).
[266] Xu Y T, Sayem A A, Fan L R et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate[J]. Nature Communications, 12, 4453(2021).
[267] Luo R, Jiang H W, Liang H X et al. Self-referenced temperature sensing with a lithium niobate microdisk resonator[J]. Optics Letters, 42, 1281-1284(2017).
[269] Adcock J C, Ding Y H. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Frontiers of Optoelectronics, 15, 7(2022).
[270] Li M, Zhang Y L, Tang H X et al. Photon-photon quantum phase gate in a photonic molecule with χ(2) nonlinearity[J]. Physical Review Applied, 13, 044013(2020).
[272] Zhang M, Wang C, Hu Y W et al. Electronically programmable photonic molecule[J]. Nature Photonics, 13, 36-40(2019).
[274] Ma X Y, Cai Z Y, Zhuang C J et al. Integrated microcavity electric field sensors using Pound-Drever-Hall detection[J]. Nature Communications, 15, 1386(2024).
[275] Jiang H, Luo R, Liang H et al. Fast response of photorefraction in lithium niobate microresonators[J]. Optics Letters, 42, 3267-3270(2017).
[277] Surya J B, Lu J J, Xu Y T et al. Stable tuning of photorefractive microcavities using an auxiliary laser[J]. Optics Letters, 46, 328-331(2021).
[278] Xu Y T, Sayem A A, Zou C L et al. Photorefraction-induced Bragg scattering in cryogenic lithium niobate ring resonators[J]. Optics Letters, 46, 432-435(2021).
[279] Abdelsalam K, Li T F, Khurgin J B et al. Linear isolators using wavelength conversion[J]. Optica, 7, 209-213(2020).
[280] Zhang J Y, Sua Y M, Chen J Y et al. Carbon-dioxide absorption spectroscopy with solar photon counting and integrated lithium niobate micro-ring resonator[J]. Applied Physics Letters, 118, 171103(2021).
[281] Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nature Photonics, 10, 227-238(2016).
[282] Jiang X D, Pak D, Nandi A et al. Rare earth-implanted lithium niobate: properties and on-chip integration[J]. Applied Physics Letters, 115, 071104(2019).
[283] Dutta S, Goldschmidt E A, Barik S et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate[J]. Nano Letters, 20, 741-747(2019).
Get Citation
Copy Citation Text
Li Deng, Renhong Gao, Jianglin Guan, Chuntao Li, Guanghui Zhao, Minghui Li, Qian Qiao. Research Progress in Nonlinear Optics of Thin-Film Lithium Niobate Micro/nano Structures (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(11): 1116011
Category: Materials
Received: May. 21, 2024
Accepted: Jun. 6, 2024
Published Online: Jun. 21, 2024
The Author Email: Li Deng (ldeng@phy.ecnu.edu.cn)
CSTR:32186.14.LOP241337