High Power Laser and Particle Beams, Volume. 35, Issue 2, 026001(2023)

Dynamic process of low energy electrons through insulating nanocapillaries

Peng Zhou1, Chengliang Wan1, Hua Yuan1, Zidong Cheng1, Pengfei Li1, Haowen Zhang1, Ying Cui1,2、*, Hongqiang Zhang1,2, and Ximeng Chen1
Author Affiliations
  • 1College of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
  • 2Center for Advanced Science of Rare Isotopes, Lanzhou University, Lanzhou 730000, China
  • show less
    References(33)

    [1] Lemell C, Burgdörfer J, Aumayr F. Interaction of charged particles with insulating capillary targets—The guiding effect[J]. Progress in Surface Science, 88, 237-278(2013).

    [2] Stolterfoht N, Yamazaki Y. Guiding of charged particles through capillaries in insulating materials[J]. Physics Reports, 629, 1-107(2016).

    [3] Martin C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 266, 1961-1966(1994).

    [4] Stolterfoht N, Hellhammer R, Bundesmann J, et al. Scaling laws for guiding of highly charged ions through nanocapillaries in an insulating polymer[J]. Physical Review A, 77, 032905(2008).

    [5] Stolterfoht N, Hellhammer R, Bundesmann J, et al. Density effects on the guided transmission of 3 keV Ne7+ ions through PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267, 226-230(2009).

    [6] Vokhmyanina K A, Kubankin A S, Myshelovka L V, et al. Transport of accelerated electrons through dielectric nanochannels in PET films[J]. Journal of Instrumentation, 15, C04003(2020).

    [7] Sahana M B, Skog P, Víkor G, et al. Guiding of highly charged ions by highly ordered SiO2 nanocapillaries[J]. Physical Review A, 73, 040901(R)(2006).

    [8] Zhang H Q, Skog P, Schuch R. Dynamics of guiding highly charged ions through SiO2 nanocapillaries[J]. Physical Review A, 82, 052901(2010).

    [9] Stolterfoht N, Hellhammer R, Juhász Z, et al. Guided transmission of Ne7+ ions through nanocapillaries in insulating polymers: scaling laws for projectile energies up to 50 keV[J]. Physical Review A, 79, 042902(2009).

    [10] Ha Shuai, Zhang Wenming, Xie Yiming, . Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries[J]. Acta Physica Sinica, 69, 094101(2020).

    [11] Skog P, Soroka I L, Johansson A, et al. Guiding of highly charged ions through Al2O3 nano-capillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258, 145-149(2007).

    [12] Zhang Qi, Liu Zhonglin, Li Pengfei, et al. Transmission of low-energy negative ions through insulating nanocapillaries[J]. Physical Review A, 97, 042704(2018).

    [13] Das S, Dassanayake B S, Winkworth M, et al. Inelastic guiding of electrons in polymer nanocapillaries[J]. Physical Review A, 76, 042716(2007).

    [14] Li Pengfei, Yuan Hua, Cheng Zidong, . Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding[J]. Acta Physica Sinica, 71, 074101(2022).

    [15] Li Pengfei, Yuan Hua, Cheng Zidong, . Dynamics of low energy electrons transmitting through straight glass capillary: tilt angle dependence[J]. Acta Physica Sinica, 71, 084104(2022).

    [16] Milosavljević A R, Víkor G, Pešić Z D, et al. Guiding of low-energy electrons by highly ordered Al2O3 nanocapillaries[J]. Physical Review A, 75, 030901(R)(2007).

    [17] Dassanayake B S, Das S, Bereczky R J, et al. Energy dependence of electron transmission through a single glass macrocapillary[J]. Physical Review A, 81, 020701(R)(2010).

    [18] Wickramarachchi S J, Dassanayake B S, Keerthisinghe D, et al. Electron transmission through a microsize tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269, 1248-1252(2011).

    [19] Zhang Hongqiang, Akram N, Soroka I L, et al. Transmission of highly charged ions through mica nanocapillaries of rhombic cross section[J]. Physical Review A, 86, 022901(R)(2012).

    [20] Zhang H Q, Akram N, Skog P, et al. Tailoring of keV-ion beams by image charge when transmitting through rhombic and rectangular shaped nanocapillaries[J]. Physical Review Letters, 108, 193202(2012).

    [21] Zhang Hongqiang, Akram N, Schuch R. Guiding and scattering of ions in transmission through mica nanocapillaries[J]. Physical Review A, 94, 032704(2016).

    [22] Schiessl K, Tőkési K, Solleder B, et al. Electron guiding through insulating nanocapillaries[J]. Physical Review Letters, 102, 163201(2009).

    [23] Dassanayake B S, Keerthisinghe D, Wickramarachchi S, et al. Temporal evolution of electron transmission through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 298, 1-4(2013).

    [24] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Charge deposition dependence and energy loss of electrons transmitted through insulating PET nanocapillaries[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 105-108(2013).

    [25] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, et al. Elastic and inelastic transmission of electrons through insulating polyethylene terephthalate nanocapillaries[J]. Physical Review A, 92, 012703(2015).

    [26] Dassanayake B S, Bereczky R J, Das S, et al. Time evolution of electron transmission through a single glass macrocapillary: charge build-up, sudden discharge, and recovery[J]. Physical Review A, 83, 012707(2011).

    [27] Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Electron-beam transmission through a micrometer-sized tapered-glass capillary: dependence on incident energy and angular tilt angle[J]. Physical Review A, 94, 022701(2016).

    [28] Wickramarachchi S J, Ikeda T, Dassanayake B S, et al. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 382, 60-66(2016).

    [29] Hovington P, Drouin D, Gauvin R, et al. CASINO: a new Monte Carlo code in C language for electron beam interactions—part III: stopping power at low energies[J]. Scanning, 19, 29-35(1997).

    [30] Drouin D, Couture A R, Joly D, et al. CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users[J]. Scanning, 29, 92-101(2007).

    [31] Demers H, Poirrier-Demers N, Couture A R, et al. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software[J]. Scanning, 33, 135-146(2011).

    [32] Joy D C, Luo S. An empirical stopping power relationship for low-energy electrons[J]. Scanning, 11, 176-180(1989).

    [33] Lowney J R. Monte Carlo simulation of scanning electron microscope signals for lithographic metrology[J]. Scanning, 18, 301-306(1996).

    Tools

    Get Citation

    Copy Citation Text

    Peng Zhou, Chengliang Wan, Hua Yuan, Zidong Cheng, Pengfei Li, Haowen Zhang, Ying Cui, Hongqiang Zhang, Ximeng Chen. Dynamic process of low energy electrons through insulating nanocapillaries[J]. High Power Laser and Particle Beams, 2023, 35(2): 026001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nuclear Science and Engineering

    Received: Apr. 24, 2022

    Accepted: --

    Published Online: Feb. 16, 2023

    The Author Email: Cui Ying (cuying@lzu.edu.cn)

    DOI:10.11884/HPLPB202335.220120

    Topics