Journal of Atmospheric and Environmental Optics, Volume. 18, Issue 6, 503(2023)
Time-frequency analysis of millimeter radar based on synchrosqueezing wavelet transform
[1] Wei Z L, Fu N, Qiao L Y et al. A parameter estimation method for sub-Nyquist sampled radar signals based on frequency-domain delay-Doppler two-dimensional focusing[J]. Journal of Electronics & Information Technology, 43, 3228-3236(2021).
[2] Wan R J. Research on Key Signal Processing Technology of Millimeter Wave LFM Continuous Wave Automotive Radar[D](2019).
[3] Shi D Y, Lin Q, Hu B et al. Radar residual clutter suppression method based on improved BP neural network[J]. Journal of Sichuan Ordnance, 42, 79-85(2021).
[4] Sun Y. Research on Key Technologies of 24 GHz Radar Ranging[D](2019).
[5] Gou X L, Li Z C, Liang Y L et al. Research on lightweight MEMS LIDAR ranging denoising algorithm[J]. Journal of Electronic Measurement and Instrumentation, 35, 177-184(2021).
[6] Li Z G, Wang B G, Wang Y F. Application of Wigner-Hough transform in signals processing of millimeter wave anti-collusion radar[J]. Journal of Electronic Measurement and Instrument, 20, 52-55(2006).
[7] Daubechies I, Lu J, Wu H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 3, 243-261(2011).
[8] Fu H, Liu G Q, Xing L. Fault traveling wave ranging method based on synchrosqueezing wavelet transform[J]. Power System Protection and Control, 48, 18-24(2020).
[9] Liu J L, Zheng J Y, Zheng W T et al. Recognition of signal instantaneous frequency based on improved synchronous squeezing wavelet transform[J]. Journal of Vibration, Measurement & Diagnosis, 37, 814-821, 848(2017).
[10] Liu J L, Zheng J Y, Lin Y Q et al. Instantaneous frequency identification of time-varying structures using variational mode decomposition and synchrosqueezing wavelet transform[J]. Journal of Vibration and Shock, 37, 24-31(2018).
[11] Zhang Q, Liu Y P. The time-frequency characteristic analysis of seismic prospecting signals based on synchrosqueezing transform[J]. Petrochemical Industry Technology, 26, 116-118(2019).
[12] Tong T, Zhang X Y, Kong D Q et al. Harmonic analysis of power system based on synchrosqueezing transform[J]. Acta Energiae Solaris Sinica, 42, 49-56(2021).
[13] Li H, Huang Z L, Liu Y L. De-noising method of ground penetrating radar signal based on synchrosqueezing S-transform[J]. Journal of Tianjing University of Science & Technology, 33, 67-72(2018).
[14] Man W S, Zhu Z Y, Zhang Z Y et al. A method of human motion postures analysis using synchrosqueezed wavelet transform[J]. Journal of Xi'an Jiaotong University, 51, 8-13(2017).
[15] Liu J L, Wang X Y, Zheng J Y et al. Instantaneous frequency identification based on synchroextraction and maximum modulus of time⁃frequency coefficients[J]. Journal of Vibration, Measurement & Diagnosis, 41, 519-526(2021).
[16] Pan X, Cao S Y, Xu Y K et al. The hydrocarbon detection technology based on synchrosqueezing wavelet transform[J]. Chinese Journal of Geophysics, 63, 4176-4187(2020).
[17] Winkler V. Range Doppler detection for automotive FMCW radars[C], 166-169(2007).
[18] Anghel A, Vasile G, Cacoveanu R et al. Short-range wideband FMCW radar for millimetric displacement measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 5633-5642(2014).
[19] Feng S L, Cui Q, Guo X Q et al. Optical fringes removal in TDLAS based on wavelet denoising[J]. Journal of Atmospheric and Environmental Optics, 17, 328-335(2022).
Get Citation
Copy Citation Text
Cong LI, Hua XU, Congcong DAI, Yang FENG, Quan DENG, Zhiming ZHOU. Time-frequency analysis of millimeter radar based on synchrosqueezing wavelet transform[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(6): 503
Category:
Received: Jun. 13, 2022
Accepted: --
Published Online: Dec. 22, 2023
The Author Email: Congcong DAI (2898471415@qq.com)