Journal of Inorganic Materials, Volume. 40, Issue 2, 113(2025)
[1] HUMAYUN M, ISRAR M, KHAN A et al. State-of-the-art single-atom catalysts in electrocatalysis: from fundamentals to applications[J]. Nano Energy, 108570(2023).
[2] WANG L, WEI J, LI Y et al. A state-of-the-art review on heterogeneous catalysts-mediated activation of peracetic acid for micropollutants degradation: classification of reaction pathways, mechanisms, influencing factors and DFT calculation[J]. Chem. Eng. J., 147051(2023).
[3] WANG H, WANG S, SONG Y et al. Boosting electrocatalytic ethylene epoxidation by single atom modulation[J]. Angew. Chem. Int. Ed., e202402950(2024).
[7] HE J, ZHAO Z H, LI J et al. Hydrogenation of olefinic bonds in nitrile butadiene rubber on single-atom Pd1/CeO2-
[8] DONG F, MENG Y, LING W et al. Single atomic Pt confined into lattice defect sites for low-temperature catalytic oxidation of VOCs[J]. Appl. Catal. B-Environ. Energy, 123779(2024).
[10] ZHENG Y, YANG Q, WANG S et al. Adjacent MnO
[11] MIAO J, MA Y, WANG X et al. Efficiently selective C(O-)-C bond cleavage for full lignocellulose upgrading coupled with energy-saving hydrogen production by Ir single-atom electrocatalyst[J]. Appl. Catal. B-Environ., 122937(2023).
[12] PEI Z, ZHANG H, WU Z P et al. Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity[J]. Sci. Adv., eadh1320(2023).
[13] XING L, GAO H, HAI G et al. Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution[J]. J. Mater. Chem. A, 3203(2020).
[14] TANG B, ZHOU Y, JI Q et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution[J]. Nat. Synth., 878(2024).
[15] YU Y, ZHU Z, HUANG H. Surface engineered single-atom systems for energy conversion[J]. Adv. Mater., 2311148(2024).
[16] XU H, ZHAO Y, WANG Q et al. Supports promote single-atom catalysts toward advanced electrocatalysis[J]. Coord. Chem. Rev., 214261(2022).
[18] CAO F, NI W, ZHAO Q et al. Precisely manipulating the local coordination of cobalt single-atom catalyst boosts selective hydrogenation of nitroarenes[J]. Appl. Catal. B-Environ. Energy, 123762(2024).
[19] LIU X, ZHOU Y, LIN J et al. Directional growth and density modulation of single-atom platinum for efficient electrocatalytic hydrogen evolution[J]. Angew. Chem. Int. Ed., e202406650(2024).
[20] LI H, PAN F, QIN C et al. Porous organic polymers-based single-atom catalysts for sustainable energy-related electrocatalysis[J]. Adv. Energy Mater., 2301378(2023).
[21] GLOAG L, SOMERVILLE S V, GOODING J J et al. Co-catalytic metal-support interactions in single-atom electrocatalysts[J]. Nat. Rev. Mater., 173(2024).
[22] YAN Q Q, WU D X, CHU S Q et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution[J]. Nat. Commun., 4977(2019).
[23] ZHANG H, WU F, HUANG R et al. Symmetry evolution induced 2D Pt single atom catalyst with high density for alkaline hydrogen oxidation[J]. Adv. Mater., 2404672(2024).
[24] LI Z, WANG D, WU Y et al. Recent advances in the precise control of isolated single-site catalysts by chemical methods[J]. Nat. Sci. Rev., 673(2018).
[25] WANG X, KANG Z, WANG D et al. Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis[J]. Nano Energy, 109268(2024).
[27] SAPTAL V B, RUTA V, BAJADA M A et al. Single-atom catalysis in organic synthesis[J]. Angew. Chem. Int. Ed., e202219306(2023).
[28] XI J, JUNG H S, XU Y et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts[J]. Adv. Funct. Mater., 2008318(2021).
[29] WANG P, JIN Z L, CHEN N G et al. Theoretical investigation of Mo doped
[30] SUN D, CHEN Y, YU X et al. Engineering high-coordinated cerium single-atom sites on carbon nitride nanosheets for efficient photocatalytic amine oxidation and water splitting into hydrogen[J]. Chem. Eng. J., 142084(2023).
[31] DING J, HUANG L, JI G et al. Modification of catalytic properties of hollandite manganese oxide by Ag intercalation for oxidative acetalization of ethanol to diethoxyethane[J]. ACS Catal., 5347(2021).
[32] YIN S, LI Y, YANG J et al. Unveiling low temperature assembly of dense Fe-N4 active sites
[33] DU P, QI R, ZHANG Y et al. Single-atom-driven dynamic carburization over Pd1-FeO
[34] SUN L, CAO L, SU Y et al. Ru1/FeO
[35] SWAIN S, ALTAEE A, SAXENA M et al. A comprehensive study on heterogeneous single atom catalysis: current progress, and challenges[J]. Coord. Chem. Rev., 214710(2022).
[36] GUO R, GUO C, BI Z et al. The single atom Fe loaded catalytic membrane for effective peroxymonosulfate activation and pollution degradation[J]. Appl. Catal. B-Environ. Energy, 124243(2024).
[38] MEESE A F, NAPIER C, KIM D J et al. Underpotential deposition of 3D transition metals: versatile electrosynthesis of single-atom catalysts on oxidized carbon supports[J]. Adv. Mater., 2311341(2024).
[39] ZHAO X, HE D, XIA B Y et al. Ambient electrosynthesis toward single-atom sites for electrocatalytic green hydrogen cycling[J]. Adv. Mater., 2210703(2023).
[40] LV Y K, WANG K, SUN W Y et al. A universal electrochemical synthetic strategy for the direct assembly of single-atom catalysts[J]. Adv. Sci., 2304656(2023).
[41] YAO R, SUN K, ZHANG K et al. Stable hydrogen evolution reaction at high current densities
[42] XU H, XIN G, HU W et al. Single-atoms Ru/NiFe layered double hydroxide electrocatalyst: efficient for oxidation of selective oxidation of 5-hydroxymethylfurfural and oxygen evolution reaction[J]. Appl. Catal. B-Environ., 123157(2023).
[44] QI K, CUI X, GU L et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis[J]. Nat. Commun., 5231(2019).
[47] ZHOU J, LIU Y, YANG D R et al. Predicting the stability and loading for electrochemical preparation of single-atom catalysts[J]. ACS Catal., 79(2023).
[48] XU J, LI R, XU C Q et al. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts[J]. Appl. Catal. B-Environ., 120028(2021).
[49] SHANKAR A, MARIMUTHU S, MADURAIVEERAN G. High-valent iron single-atom catalysts for improved overall water splitting
[50] FONSECA J, LU J. Single-atom catalysts designed and prepared by the atomic layer deposition technique[J]. ACS Catal., 7018(2021).
[51] CAO L, LU J. Atomic-scale engineering of metal-oxide interfaces for advanced catalysis using atomic layer deposition[J]. Catal. Sci. Technol., 2695(2020).
[52] GONG T, QIN L, ZHANG W et al. Activated carbon supported palladium nanoparticle catalysts synthesized by atomic layer deposition: genesis and evolution of nanoparticles and tuning the particle size[J]. J. Phys. Chem. C, 11544(2015).
[53] SUN S, ZHANG G, GAUQUELIN N et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Sci. Rep., 1775(2013).
[55] WANG X, JIN B, JIN Y et al. Supported single Fe atoms prepared
[56] HE X, DING Y, HUANG Z et al. Engineering a self-grown TiO2/Ti-MOF heterojunction with selectively anchored high- density Pt single-atomic cocatalysts for efficient visible-light- driven hydrogen evolution[J]. Angew. Chem. Int. Ed., e202217439(2023).
[57] SONG Z, ZHU Y N, LIU H et al. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction[J]. Small, 2003096(2020).
[58] SHI X, LIN Y, HUANG L et al. Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles[J]. ACS Catal., 3495(2020).
[59] JUSSILA T, PHILIP A, TRIPATHI T et al. Atomic layer deposition of magnetic thin films: basic processes, engineering efforts, and road forward[J]. Appl. Phys. Rev., 041313(2023).
[60] AFTABUZZAMAN M, AHMED M S, MATYJASZEWSKI K et al. Nanocrystal co-existed highly dense atomically disperse Pt@3D-hierarchical porous carbon electrocatalysts for tri-iodide and oxygen reduction reactions[J]. Chem. Eng. J., 137249(2022).
[61] JEONG H, KWON O, KIM B S et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts[J]. Nat. Catal., 368(2020).
[62] CHEN Z, LI X, ZHAO J et al. Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution[J]. Angew. Chem. Int. Ed., e202308686(2023).
[63] XU R, XU B, YOU X et al. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions[J]. J. Mater. Chem. A, 11202(2023).
[64] HUANG Y, XIONG J, ZOU Z et al. Emerging strategies for the synthesis of correlated single atom catalysts[J]. Adv. Mater., 2312182(2025).
[65] ZHOU S, SHANG L, ZHAO Y et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene[J]. Adv. Mater., 1900509(2019).
[66] LIU H, TIAN L, ZHANG Z et al. Atomic-level asymmetric tuning of the Co1-N3P1 catalyst for highly efficient n-alkylation of amines with alcohols[J]. J. Am. Chem. Soc., 20518(2024).
[67] XU H, XI S, LI J et al. Chemical design and synthesis of superior single-atom electrocatalysts
[68] LI X, LIU J, WU J et al. Constructing a highly active Pd atomically dispersed catalyst for cinnamaldehyde hydrogenation: synergistic catalysis between Pd-N3 single atoms and fully exposed Pd clusters[J]. ACS Catal., 2369(2024).
[69] LI R, WANG D. Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts[J]. Adv. Energy Mater., 2103564(2022).
[70] LI L, YUAN K, CHEN Y. Breaking the scaling relationship limit: from single-atom to dual-atom catalysts[J]. Acc. Mater. Res., 584(2022).
[71] YU B, CHENG L, DAI S et al. Silver and copper dual single atoms boosting direct oxidation of methane to methanol
[72] FU J, DONG J, SI R et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst[J]. ACS Catal., 1952(2021).
[74] ZHANG T, CHEN Z, WALSH A G et al. Single-atom catalysts supported by crystalline porous materials: views from the inside[J]. Adv. Mater., 2002910(2020).
[77] ZHUANG L, JIA Y, LIU H et al. Defect-induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis[J]. Adv. Mater., 1805581(2019).
[78] REN G, ZHAO J, ZHAO Z et al. Defects-induced single-atom anchoring on metal-organic frameworks for high-efficiency photocatalytic nitrogen reduction[J]. Angew. Chem. Int. Ed., e202314408(2024).
[79] SHARMA P, SHARMA M, DEARG M et al. Cd/Pt precursor solution for solar H2 production and
[80] GAN T, LIU Y, HE Q et al. Facile synthesis of kilogram-scale co-alloyed Pt single-atom catalysts
[81] GAN T, HE Q, ZHANG H et al. Unveiling the kilogram-scale gold single-atom catalysts
[82] HE X, DENG Y, ZHANG Y et al. Mechanochemical kilogram- scale synthesis of noble metal single-atom catalysts[J]. Cell Rep. Phys. Sci., 100004(2020).
[83] LIU Z R, LIU W, HAO C et al. Honeycomb-like carbon- supported Fe single atom catalyst: preparation and electrocatalytic performance in oxygen reduction reaction[J]. J. Inorg. Mater., 943(2021).
[84] CHANG W, QI B, WANG R et al. Atomically dispersed gold nanoclusters and single atoms coexisting chiral electrode for high-performance enantioselective electrosynthesis using H2O as hydrogen source[J]. Adv. Funct. Mater., 2315675(2024).
[87] LI Y, KIDKHUNTHOD P, ZHOU Y et al. Dense heterointerfaces and unsaturated coordination synergistically accelerate electrocatalysis in Pt/Pt5P2 porous nanocages[J]. Adv. Funct. Mater., 2205985(2022).
[88] SONG J, ZHANG H, SUN R et al. Local CO generator enabled by a CO-producing core for kinetically enhancing electrochemical CO2 reduction to multicarbon products[J]. ACS Nano, 11416(2024).
[89] JONES J, XIONG H, DELARIVA A T et al. Thermally stable single-atom platinum-on-ceria catalysts
[90] QU Y, LI Z, CHEN W et al. Direct transformation of bulk copper into copper single sites
[92] WANG Z, WANG C, HU Y et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction[J]. Nano Res., 2790(2021).
[93] ZHU M, ZHAO C, LIU X et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton- exchange membrane fuel cells[J]. ACS Catal., 3923(2021).
[94] ZHANG H, TANG T, WANG H F et al. Topological conversion of nickel foams to monolithic single-atom catalysts[J]. Adv. Funct. Mater., 2312939(2024).
[95] ZHAO C, WANG Y, LI Z et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction[J]. Joule, 584(2019).
[96] PENG Y, CAO J, SHA Y et al. Laser solid-phase synthesis of single-atom catalysts[J]. Light Sci. Appl., 168(2021).
[97] KAUSHIK S, WU D, ZHANG Z et al. Universal synthesis of single-atom catalysts by direct thermal decomposition of molten salts for boosting acidic water splitting[J]. Adv. Mater., 2401163(2024).
[98] DU X, HUANG Y, PAN X et al. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: redispersion process and mechanism[J]. Chin. J. Catal., 237(2024).
[99] YE C, SHAN J, ZHU C et al. Spatial structure engineering of interactive single platinum sites toward enhanced electrocatalytic hydrogen evolution[J]. Adv. Energy Mater., 2302190(2023).
[100] YAO Y, HU S, CHEN W et al. Engineering the electronic structure of single atom Ru sites
[101] XUE Z, YAN M, YU X et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors[J]. Chem, 3364(2020).
[102] YUE C, FENG C, SUN G et al. Hierarchically stabilized Pt single-atom catalysts induced by an atomic substitution strategy for an efficient hydrogen evolution reaction[J]. Energy Environ. Sci., 5227(2024).
[103] LI Q, ZHANG Q, XU W et al. Sowing single atom seeds: a versatile strategy for hyper-low noble metal loading to boost hydrogen evolution reaction[J]. Adv. Energy Mater., 2203955(2023).
[105] LU G, SCHWIDEROWSKI P, SHEN Z et al. Macroporous carbon-supported Fe-based catalysts for the solvent-free oxidative coupling of benzylamine[J]. Chem. Mater., 2049(2024).
[106] SONG J, QIAN S J, YANG W et al. Nano-single-atom heterointerface engineering for pH-universal electrochemical nitrate reduction to ammonia[J]. Adv. Funct. Mater., 2409089(2024).
[108] WAN J, ZHANG H, YANG J et al. Synergy between Fe and Mo single atom catalysts for ammonia electrosynthesis[J]. Appl. Catal. B-Environ. Energy, 123816(2024).
[109] WEN M, SUN N, JIAO L et al. Microwave-assisted rapid synthesis of MOF-based single-atom Ni catalyst for CO2 electroreduction at ampere-level current[J]. Angew. Chem. Int. Ed., e202318338(2024).
[110] CHANG J, JING W, YONG X et al. Synthesis of ultrahigh- metal-density single-atom catalysts
[111] CHEN C, SUN M, ZHANG F et al. Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom- catalyst through a dual-metal-site design[J]. Energy Environ. Sci., 1685(2023).
[112] ZHU M, ZHANG H, HU Y et al.
[113] NAVEEN K, MAHVELATI-SHAMSABADI T, SHARMA P et al. MOF-derived Co/Zn single-atom catalysts for reversible hydrogenation and dehydrogenation of quinoline hydrogen carrier[J]. Appl. Catal. B-Environ., 122482(2023).
[115] QU Y, WANG L, LI Z et al. Ambient synthesis of single-atom catalysts from bulk metal
[118] DENG D, QIAN J, LIU X et al. Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction[J]. Adv. Funct. Mater., 2203471(2022).
[119] BÜKER J, HUANG X, BITZER J et al. Synthesis of Cu Single atoms supported on mesoporous graphitic carbon nitride and their application in liquid-phase aerobic oxidation of cyclohexene[J]. ACS Catal., 7863(2021).
[120] XIA C, QIU Y, XIA Y et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots[J]. Nat. Chem., 887(2021).
[122] YANG Y, XIAO Y, JIANG L et al. Ultrahigh single Au atoms loaded porous aromatic frameworks for enhanced photocatalytic hydrogen evolution[J]. Adv. Mater., 2404791(2024).
[124] JIN Y X, SONG E H, ZHU Y F. First-principles investigation of single 3d transition metals doping graphene vacancies for CO2 electroreduction[J]. J. Inorg. Mater., 845(2024).
[125] WU J, YU L B, LIU S S et al. NiN4Cr embedded graphene for electrochemical nitrogen fixation[J]. J. Inorg. Mater., 1141(2022).
[126] DENG J, ZENG Y, ALMATRAFI E et al. Advances of carbon nitride based atomically dispersed catalysts from single-atom to dual-atom in advanced oxidation process applications[J]. Coord. Chem. Rev., 215693(2024).
[127] YANG X, XU L, LI Y. Do we achieve “1 + 1 > 2” in dual-atom or dual-single-atom catalysts?[J]. Coord. Chem. Rev., 215961(2024).
[128] CHENG C C, LIN T Y, TING Y C et al. Metal-organic frameworks stabilized Mo and W binary single-atom catalysts as high performance bifunctional electrocatalysts for water electrolysis[J]. Nano Energy, 108450(2023).
[129] HAN W, LING W, GAO P et al. Engineering Pt single atom catalyst with abundant lattice oxygen by dual nanospace confinement strategy for the efficient catalytic elimination of VOCs[J]. Appl. Catal. B-Environ. Energy, 123687(2024).
[130] CHEN W, YU M, LIU S et al. Recent progress of Ru single-atom catalyst: synthesis, modification, and energetic applications[J]. Adv. Funct. Mater., 2313307(2024).
[131] FENG W, LIU C, ZHANG G et al. Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity[J]. EnergyChem, 100119(2024).
[132] LI M L, XIE Y M, SONG J et al. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts[J]. Chin. J. Catal., 42(2024).
Get Citation
Copy Citation Text
Shujuan SUN, Nannan ZHENG, Haokun PAN, Meng MA, Jun CHEN, Xiubing HUANG.
Category:
Received: Jun. 21, 2024
Accepted: --
Published Online: Apr. 24, 2025
The Author Email: Xiubing HUANG (xiubinghuang@ustb.edu.cn)