Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1435(2025)
Recent Development on Oxyhalide Electrolytes for All-Solid-State Batteries
[1] [1] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 1(9): 16141.
[2] [2] GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy Environ Sci, 2014, 7(1): 14–18.
[3] [3] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.
[4] [4] XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nat Commun, 2020, 11(1): 2499.
[5] [5] SUN C W, LIU J, GONG Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363–386.
[6] [6] FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chem Rev, 2020, 120(14): 7020–7063.
[7] [7] KWADE A, HASELRIEDER W, LEITHOFF R, et al. Current status and challenges for automotive battery production technologies[J]. Nat Energy, 2018, 3: 290–300.
[8] [8] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Rev, 2004, 104(10): 4303–4417.
[9] [9] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.
[10] [10] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chem Rev, 2016, 116(1): 140–162.
[11] [11] ZHANG T F, HE W J, ZHANG W, et al. Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries[J]. Chem Sci, 2020, 11(33): 8686–8707.
[12] [12] MAUGER A, JULIEN C M, PAOLELLA A, et al. Building better batteries in the solid state: A review[J]. Materials, 2019, 12(23): 3892.
[13] [13] HE B J, ZHANG F, XIN Y, et al. Halogen chemistry of solid electrolytes in all-solid-state batteries[J]. Nat Rev Chem, 2023, 7(12): 826–842.
[14] [14] WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries[J]. Chem Rev, 2020, 120(10): 4257–4300.
[15] [15] VAN DEN BROEK J, AFYON S, RUPP J L M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors[J]. Adv Energy Mater, 2016, 6(19): 1600736.
[16] [16] CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem Rev, 2020, 120(14): 6820–6877.
[17] [17] WANG C H, LIANG J W, ZHAO Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design[J]. Energy Environ Sci, 2021, 14(5): 2577–2619.
[18] [18] YU C, ZHAO F P, LUO J, et al. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics[J]. Nano Energy, 2021, 83: 105858.
[19] [19] NIKODIMOS Y, HUANG C J, TAKLU B W, et al. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy Environ Sci, 2022, 15(3): 991–1033.
[20] [20] WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci Adv, 2022, 8(36): eadc9516.
[21] [21] LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ Sci, 2020, 13(5): 1429–1461.
[22] [22] TUO K Y, SUN C W, LIU S Q. Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries[J]. Electrochem Energy Rev, 2023, 6(1): 17.
[23] [23] TANAKA Y, UENO K, MIZUNO K, et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS·cm–1 for all-solid-state batteries[J]. Angew Chem Int Ed, 2023, 62(13): e202217581.
[24] [24] ZHANG S M, ZHAO F P, CHEN J T, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nat Commun, 2023, 14(1): 3780.
[25] [25] HU L, WANG J Z, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nat Commun, 2023, 14(1): 3807.
[26] [26] ISHIGURO Y, UENO K, NISHIMURA S, et al. TaCl5-glassified ultrafast lithium ion-conductive halide electrolytes for high-performance all-solid-state lithium batteries[J]. Chem Lett, 2023, 52(4): 237–241.
[27] [27] WANG J Z, CHEN F, HU L, et al. Alternate crystal structure achieving ionic conductivity above 1 mS·cm–1 in cost-effective Zr-based chloride solid electrolytes[J]. Nano Lett, 2023, 23(13): 6081–6087.
[28] [28] LIU Y K, YU T, XU S, et al. Constructing an oxyhalide interface for 4.8 V-tolerant high-nickel cathodes in all-solid-state lithium-ion batteries[J]. Angew Chem Int Ed, 2024, 63(33): e202403617.
[29] [29] ADAMS S. Origin of fast Li+-ion conductivity in the compressible oxyhalide LiNbOCl4[J]. Energy Storage Mater, 2024, 68: 103359.
[30] [30] ZHANG S M, ZHAO F P, CHANG L Y, et al. Amorphous oxyhalide matters for achieving lithium superionic conduction[J]. J Am Chem Soc, 2024, 146(5): 2977–2985.
[31] [31] PARK K H, KIM S Y, JUNG M, et al. Anion engineering for stabilizing Li interstitial sites in halide solid electrolytes for all-solid-state Li batteries[J]. ACS Appl Mater Interfaces, 2023, 15(50): 58367–58376.
[32] [32] CHENG J Y, ZHANG H C, WANG Z X, et al. O2− substituted Li-richened Li2ZrCl6 lattice towards superionic conductivity[J]. J Energy Storage, 2024, 89: 111700.
[33] [33] WANG G Z, ZHANG S M, WU H, et al. Oxychloride polyanion clustered solid-state electrolytesviahydrate-assisted synthesis for all-solid-state batteries[J]. Adv Mater, 2025, 37(4): e2410402.
[34] [34] HARTWIG P, RABENAU A, WEPPNER W. Lithium hydroxide halides: Phase equilibria and ionic conductivities[J]. J Less Common Met, 1981, 78(2): 227–233.
[35] [35] SCHWERING G, HNNERSCHEID A, VAN WLLEN PRIV-DOZ DR L, et al. High lithium ionic conductivity in the lithium halide hydrates Li3–n(OHn)Cl (0.83≤n≤2) and Li3–n(OHn)Br (1≤n≤2) at ambient temperatures[J]. ChemPhysChem, 2003, 4(4): 343–348.
[36] [36] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J Am Chem Soc, 2012, 134(36): 15042–15047.
[37] [37] L X J, HOWARD J W, CHEN A P, et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries[J]. Adv Sci, 2016, 3(3): 1500359.
[38] [38] DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity[J]. Nat Energy, 2023, 8: 1221–1228.
[39] [39] MA B C, LI R H, ZHU H T, et al. Stable oxyhalide-nitride fast ionic conductors for all-solid-state Li metal batteries[J]. Adv Mater, 2024, 36(30): 2402324.
[40] [40] LI X N, XU Y, ZHAO C T, et al. The universal super cation-conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angew Chem Int Ed, 2023, 62(48): e202306433.
[41] [41] KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nat Commun, 2023, 14(1): 2459.
[42] [42] ZHANG D S, XU Y, WU H, et al. A universal self-propagating synthesis of aluminum-based oxyhalide solid-state electrolytes[J]. Angew Chem Int Ed, 2024, 63(27): e202401373.
[43] [43] GAO Y J, ZHANG S M, ZHAO F P, et al. Fluorinated superionic oxychloride solid electrolytes for high-voltage all-solid-state lithium batteries[J]. ACS Energy Lett, 2024, 9(4): 1735–1742.
[44] [44] SHEN L, LI J L, KONG W J, et al. Anion-engineering toward high-voltage-stable halide superionic conductors for all-solid-state lithium batteries[J]. Adv Funct Mater, 2024, 34(48): 2408571.
[45] [45] LIN X T, ZHANG S M, YANG M H, et al. A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries[J]. Nat Mater, 2025, 24: 83–91.
[46] [46] LIN X T, ZHAO Y, WANG C H, et al. A dual anion chemistry-based superionic glass enabling long-cycling all-solid-state sodium-ion batteries[J]. Angew Chem Int Ed, 2024, 63(2): e202314181.
[47] [47] ZHAO T, SAMANTA B, DE IRUJO-LABALDE X, et al. Sodium metal oxyhalides NaMOCl4 (M = Nb, Ta) with high ionic conductivities[J]. ACS Mater Lett, 2024, 6(8): 3683–3689.
[48] [48] KMIEC S, RUOFF E, MANTHIRAM A. A new class of oxyhalide solid electrolytes NaNbCl6–2xOx for solid-state sodium batteries[J]. Angew Chem Int Ed, 2025, 64(5): e202416979.
[49] [49] ZHOU L D, BAZAK J D, LI C, et al. 4 V Na solid state batteries enabled by a scalable sodium metal oxyhalide solid electrolyte[J]. ACS Energy Lett, 2024, 9(8): 4093–4101.
[50] [50] SCHLEM R, BURMEISTER C F, MICHALOWSKI P, et al. Energy storage materials for solid-state batteries: Design by mechanochemistry[J]. Adv Energy Mater, 2021, 11(30): 2101022.
[51] [51] SEBTI E, EVANS H A, CHEN H N, et al. Stacking faults assist lithium-ion conduction in a halide-based superionic conductor[J]. J Am Chem Soc, 2022, 144(13): 5795–5811.
[52] [52] DO J L, FRII T. Mechanochemistry: A force of synthesis[J]. ACS Cent Sci, 2017, 3(1): 13–19.
[53] [53] SINGH B, WANG Y B, LIU J, et al. Critical role of framework flexibility and disorder in driving high ionic conductivity in LiNbOCl4[J]. J Am Chem Soc, 2024, 146(25): 17158–17169.
[54] [54] DUAN H, WANG C H, ZHANG X S, et al. Amorphous AlOCl compounds enabling nanocrystalline LiCl with abnormally high ionic conductivity[J]. J Am Chem Soc, 2024, 146(43): 29335–29343.
[55] [55] DENG Z, RADHAKRISHNAN B, ONG S P. Rational composition optimization of the lithium-rich Li3OCl1–xBrx anti-perovskite superionic conductors[J]. Chem Mater, 2015, 27(10): 3749–3755.
[56] [56] LI Y T, ZHOU W D, XIN S, et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries[J]. Angew Chem Int Ed, 2016, 55(34): 9965–9968.
[57] [57] XIA W, ZHAO Y, ZHAO F P, et al. Antiperovskite electrolytes for solid-state batteries[J]. Chem Rev, 2022, 122(3): 3763–3819.
[58] [58] BI X L, MU W N, MENG J J, et al. Toward high performance all-solid-state lithium or sodium metal batteries: Potential application on Li/Na-rich antiperovskites (LiRAPs/NaRAPs) electrolyte for energy storage[J]. Energy Storage Mater, 2024, 73: 103807.
[59] [59] ZHENG J, PERRY B, WU Y. Antiperovskite superionic conductors: A critical review[J]. ACS Mater Au, 2021, 1(2): 92–106.
[60] [60] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chem Mater, 2013, 25(23): 4663–4670.
[61] [61] WANG F, EVANS H A, KIM K, et al. Dynamics of hydroxyl anions promotes lithium ion conduction in antiperovskite Li2OHCl[J]. Chem Mater, 2020, 32(19): 8481–8491.
[62] [62] FENG Y, WU J G, CHI Q G, et al. Defects and aliovalent doping engineering in electroceramics[J]. Chem Rev, 2020, 120(3): 1710–1787.
[63] [63] BARBONI D, DE SOUZA R A. The thermodynamics and kinetics of iodine vacancies in the hybrid perovskite methylammonium lead iodide[J]. Energy Environ Sci, 2018, 11(11): 3266–3274.
[64] [64] CLARKE M J, DAWSON J A, MAYS T J, et al. Atomistic insights into the effects of doping and vacancy clustering on Li-ion conduction in the Li3OCl antiperovskite solid electrolyte[J]. ACS Appl Energy Mater, 2021, 4(5): 5094–5100.
[65] [65] ZHU J L, WANG Y G, LI S, et al. Sodium ion transport mechanisms in antiperovskite electrolytes Na3OBr and Na4OI2: Anin situneutron diffraction study[J]. Inorg Chem, 2016, 55(12): 5993–5998.
[66] [66] HOWARD J, HOOD Z D, HOLZWARTH N A W. Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations and experiment[J]. Phys Rev Materials, 2017, 1(7): 075406.
[67] [67] DAWSON J A, ATTARI T S, CHEN H, et al. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes[J]. Energy Environ Sci, 2018, 11(10): 2993–3002.
[68] [68] HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[69] [69] LI Y T, ZHOU W D, CHEN X, et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries[J]. Proc Natl Acad Sci USA, 2016, 113(47): 13313–13317.
[70] [70] ZHAO F P, ZHANG S M, WANG S, et al. Revealing unprecedented cathode interface behavior in all-solid-state batteries with oxychloride solid electrolytes[J]. Energy Environ Sci, 2024, 17(12): 4055–4063.
[71] [71] HUSSAIN F, ZHU J L, ZHAO Y S, et al. Exploring superionic conduction in lithium oxyhalide solid electrolytes considering composition and structural factors[J]. NPJ Comput Mater, 2024, 10: 148.
[72] [72] LU P S, ZHOU Z M, XIAO Z X, et al. Materials and chemistry design for low-temperature all-solid-state batteries[J]. Joule, 2024, 8(3): 635–657.
Get Citation
Copy Citation Text
TUO Kaiyong, LU Pushun, ZHOU Zhimin, LIANG Suzhe, ZHANG Jiaxu, HU Guantai, WANG Chao, LIU tingting, SUN Yipeng, WANG Changhong, SUN Xueliang. Recent Development on Oxyhalide Electrolytes for All-Solid-State Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1435
Category:
Received: Dec. 31, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: WANG Changhong (cwang@eitech.edu.cn)