Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1456(2025)
Advances and Challenges in Application of Ultrasound and Optical Fiber Technologies in Solid-State Batteries
[1] [1] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat Rev Mater, 2020, 5: 229–252.
[2] [2] NIU C J, LIU D Y, LOCHALA J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nat Energy, 2021, 6: 723–732.
[3] [3] XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991–2015.
[5] [5] WANG Y Y, LAI X, CHEN Q W, et al. Progress and challenges in ultrasonic technology for state estimation and defect detection of lithium-ion batteries[J]. Energy Storage Mater, 2024, 69: 103430.
[6] [6] ZHANG Y, LI Y P, GUO Z Z, et al. Health monitoring by optical fiber sensing technology for rechargeable batteries[J]. eScience, 2024, 4(1): 100174.
[7] [7] HUANG J Q, BOLES S T, TARASCON J M. Sensing as the key to battery lifetime and sustainability[J]. Nat Sustain, 2022, 5: 194–204.
[8] [8] ZAREI A, PILLA S. Laser ultrasonics for nondestructive testing of composite materials and structures: A review[J]. Ultrasonics, 2024, 136: 107163.
[9] [9] YANG H J, YANG L, YANG Z Y, et al. Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials: A review[J]. Compos Struct, 2023, 324: 117554.
[10] [10] JODHANI J, HANDA A, GAUTAM A, et al. Ultrasonic non-destructive evaluation of composites: A review[J]. Mater Today Proc, 2023, 78: 627–632.
[11] [11] FORDHAM A, MILOJEVIC Z, GILES E, et al. Correlative non-destructive techniques to investigate aging and orientation effects in automotive Li-ion pouch cells[J]. Joule, 2023, 7(11): 2622–2652.
[12] [12] YI M C, JIANG F C, LU L G, et al. Ultrasonic tomography study of metal defect detection in lithium-ion battery[J]. Front Energy Res, 2021, 9: 806929.
[13] [13] FAN Z K, BAI K R, CHEN C. Ultrasonic testing in the field of engineering joining[J]. Int J Adv Manuf Technol, 2024, 132(9): 4135–4160.
[14] [14] CAO P L, HAO C C, MA C, et al. Physical field simulation of the ultrasonic radiation method: An investigation of the vessel, probe position and power[J]. Ultrason Sonochem, 2021, 76: 105626.
[15] [15] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. J Light Technol, 1997, 15(8): 1442–1463.
[16] [16] HILL K O, MELTZ G. Fiber Bragg grating technology fundamentals and overview[J]. J Light Technol, 1997, 15(8): 1263–1276.
[17] [17] OTHONOS A. Fiber Bragg gratings[J]. Rev Sci Instrum, 1997, 68(12): 4309–4341.
[18] [18] M. M, B. ALLIL R C S, A. B, et al. A guide to fiber bragg grating sensors[C]//Cuadrado-Laborde C. InTech, 2013.
[19] [19] ALBERO BLANQUER L, MARCHINI F, SEITZ J R, et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes[J]. Nat Commun, 2022, 13(1): 1153.
[20] [20] LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes[J]. Nat Energy, 2020, 5: 299–308.
[21] [21] HUO H Y, HUANG K, LUO W, et al. Evaluating interfacial stability in solid-state pouch cellsviaultrasonic imaging[J]. ACS Energy Lett, 2022, 7(2): 650–658.
[22] [22] PEI F, WU L, ZHANG Y, et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries[J]. Nat Commun, 2024, 15(1): 351.
[23] [23] WEI Y, LIU T H, ZHOU W J, et al. Enabling all-solid-state Li metal batteries operated at 30 ℃ by molecular regulation of polymer electrolyte[J]. Adv Energy Mater, 2023, 13(10): 2203547.
[24] [24] JIANG B W, LI F Q, HOU T Y, et al. Polymer electrolytes shielded by 2D Li0.46Mn0.77PS3 Li+-conductors for all-solid-state lithium-metal batteries[J]. Energy Storage Mater, 2023, 56: 183–191.
[25] [25] LI J H, LI F Q, LI D G, et al. Negatively charged laponite sheets enhanced solid polymer electrolytes for long-cycling lithium-metal batteries[J]. ACS Appl Mater Interfaces, 2023, 15(3): 4044–4052.
[26] [26] WU L, PEI F, CHENG D M, et al. Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries[J]. Adv Funct Mater, 2024, 34(16): 2310084.
[27] [27] CHENG H, CAO J B, LI F Q, et al. Inorganic-rich interphase induced by boric oxide solid acid toward long cyclic solid-state lithium-metal batteries[J]. Adv Funct Mater, 2024, 34(1): 2307677.
[28] [28] WANG H N, CHENG H, LI D G, et al. Lithiated copper polyphthalocyanine with extended -conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries[J]. Adv Energy Mater, 2023, 13(16): 2204425.
[29] [29] HOU T Y, QIAN Y M, LI D G, et al. Electronegativity-induced single-ion conducting polymer electrolyte for solid-state lithium batteries[J]. Energy Environ Mater, 2023, 6(4): e12428.
[30] [30] WANG H N, HOU T Y, CHENG H, et al. Bifunctional LiI additive for poly(ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry[J]. J Energy Chem, 2022, 71: 218–224.
[31] [31] KALNAUS S, DUDNEY N J, WESTOVER A S, et al. Solid-state batteries: The critical role of mechanics[J]. Science, 2023, 381(6664): eabg5998.
[32] [32] YU Y F, VERGORI E, MADDAR F, et al. Real-time monitoring of internal structural deformation and thermal events in lithium-ion cellviaembedded distributed optical fibre[J]. J Power Sources, 2022, 521: 230957.
[33] [33] LI K, HUANG Y, HAN G C, et al. Real-time electrochemical-strain distribution and state-of-charge mappingviadistributed optical fiber for lithium-ion batteries[J]. J Power Sources, 2024, 624: 235526.
[34] [34] SUN K, et al. Chemo-mechanics and morphological dynamics of Si electrodes in all-solid-state Li-ion batteries[J]. ACS Energy Lett, 2025, 10(3): 1229–1234.
[35] [35] SCHMIDT R D, SAKAMOTO J. In-situ, non-destructive acoustic characterization of solid state electrolyte cells[J]. J Power Sources, 2016, 324: 126–133.
[36] [36] MUSIAK M, LI Z S. Real time ultrasonic monitoring of solid-state lithium-ion cells in the frequency domain[C]//2021 IEEE International Conference on Prognostics and Health Management (ICPHM). Detroit (Romulus), MI, USA. IEEE, 2021: 1–5.
[37] [37] BAE D C, MANANDHAR A, KIESEL D P, et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor[J]. Energy Technol, 2016, 4(7): 851–855.
[38] [38] GAFSI R, EL-SHERIF M A. Analysis of induced-birefringence effects on fiber Bragg gratings[J]. Opt Fiber Technol, 2000, 6(3): 299–323.
[39] [39] MIAO Z Y, LI Y P, XIAO X P, et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium–sulfur batteries[J]. Energy Environ Sci, 2022, 15(5): 2029–2038.
[40] [40] GUO J, ZHU K J, WU Q, et al. Microfiber sensor integrated inside solid-state lithium-metal batteries for reducing invasiveness[J]. J Power Sources, 2024, 599: 234231.
[41] [41] MEI W X, LIU Z, WANG C D, et al. operando monitoring of thermal runaway in commercial lithium-ion cellsviaadvanced lab-on-fiber technologies[J]. Nat Commun, 2023, 14(1): 5251.
[42] [42] XI J W, LI J Z, SUN H, et al.In-situmonitoring of internal temperature and strain of solid-state battery based on optical fiber sensors[J]. Sens Actuat A Phys, 2022, 347: 113888.
Get Citation
Copy Citation Text
HUANG Kai, LI Linhao, HUANG Yu, MAO Hengshan, YU Yifei, SHEN Yue, HUANG Yunhui. Advances and Challenges in Application of Ultrasound and Optical Fiber Technologies in Solid-State Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1456
Category:
Received: Apr. 29, 2025
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: YU Yifei (yuyf@hust.edu.cn)