Acta Optica Sinica, Volume. 37, Issue 3, 318002(2017)
Structure-Guided Development of Reversibly Photoswitchable Green Fluorescent Proteins Probe
[1] [1] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein[C]. Proc Natl Acad Sci U S A, 1994, 91(26): 12501-12504.
[2] [2] Shaner N C, Campbell R E, Steinbach PA, et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein[J]. Nat Biotechnol, 2004, 22(12): 1567-1572.
[3] [3] Shcherbo D, Merzlyak E M, Chepurnykh T V, et al. Bright far-red fluorescent protein for whole-body imaging[J]. Nat Methods, 2007, 4(9): 741-746.
[4] [4] Adam V, Berardozzi R, Byrdin M, et al. Phototransformable fluorescent proteins: future challenges[J]. Current Opinion in Chemical Biology, 2014, 20: 92-102.
[5] [5] Adam V. Phototransformable fluorescent proteins: which one for which application[J]. Histochemistry and Cell Biology, 2014, 142(1): 19-41.
[6] [6] Post J N, Lidke K A, Rieger B, et al. One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos[J]. FEBS Lett, 2005, 579(2): 325-330.
[7] [7] Mutoh T, Miyata T, Kashiwagi S, et al. Dynamic behavior of individual cells in developing organotypic brain slices revealed by the photoconvertable protein Kaede[J]. Exp Neurol, 2006, 200(2): 430-437.
[8] [8] Habuchi S, Ando R, Dedecker P, et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa[C]. Proc Natl Acad Sci U S A, 2005, 102(27): 9511-9516.
[9] [9] Jensen N A, Danzl J G, Willig K I, et al. Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein Dreiklang[J]. Chemphyschem, 2014, 15(4): 756-762.
[10] [10] Zhang X, Zhang M, Li D, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy[C]. Proc Natl Acad Sci U S A, 2016, 113(37): 10364-10369.
[11] [11] Wang S, Chen X Z, Chang L, et al. GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy[J]. ACS Nano, 2016, 10(10): 9136-9144.
[12] [12] Bourgeois D, Adam V. Reversible photoswitching in fluorescent proteins: a mechanistic view[J]. IUBMB Life, 2012, 64(6): 482-491.
[13] [13] Creemers T M, Lock A J, Subramaniam V V, et al. Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning[J]. Nature Structural Biology, 1999, 6(7): 557-560.
[14] [14] Bizzarri R, Serresi M, Cardarelli F, et al. Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable[J]. J Am Chem Soc, 2010, 132(1): 85-95.
[15] [15] Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478(7368): 204-208.
[16] [16] Grotjohann T, Testa I, Reuss M, et al. rsEGFP2 enables fast RESOLFT nanoscopy of living cells[J]. eLife, 2012, 1: e00248.
[17] [17] Chmyrov A, Keller J, Grotjohann T, et al. Nanoscopy with more than 100,000′ doughnuts′[J]. Nat Methods, 2013, 10(8): 737-740.
[18] [18] Duwé S, de Zitter E, Gielen V, et al. Expression-enhanced fluorescent proteins based on enhanced green fluorescent protein for super-resolution microscopy[J]. ACS Nano, 2015, 9(10): 9528-9541.
[19] [19] Khatib M E, Martins A, Bourgeois D, et al. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm[J]. Sci Rep, 2016, 6: 18459.
[20] [20] Brakemann T, Stiel A C, Weber G, et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching[J]. Nat Biotechnol, 2011, 29(10): 942-947.
[21] [21] Andresen M, Stiel A C, Trowitzsch S, et al. Structural basis for reversible photoswitching in Dronpa[C]. Proc Natl Acad Sci U S A, 2007, 104(32): 13005-13009.
[22] [22] Stiel A C, Trowitzsch S, Weber G, et al. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants[J]. Biochem J, 2007, 402(1): 35-42.
[23] [23] Adam V, Moeyaert B, David C C, et al. Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications[J]. Chem Biol, 2011, 18(10): 1241-1251.
[24] [24] Chang H, Zhang M, Ji W, et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications[C]. Proc Natl Acad Sci U S A, 2012, 109(12): 4455-4460.
[25] [25] Zhang X, Chen X, Zeng Z, et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI)[J]. ACS Nano, 2015, 9(3): 2659-2667.
[26] [26] Dertinger T, Colyer R, Vogel R, et al. Superresolution optical fluctuation imaging (SOFI)[J]. Adv Exp Med Biol, 2011, 733: 17-21.
[27] [27] Wang S, Moffitt J R, Dempsey G T, et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging[C]. Proc Natl Acad Sci U S A, 2014, 111(23): 8452-8457.
[28] [28] Nienhaus K, Nienhaus G U. Photoswitchable fluorescent proteins: do not always look on the bright side[J]. ACS Nano, 2016, 10(10): 9104-9108.
[29] [29] Andresen M, Stiel A C, Folling J, et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy[J]. Nat Biotechnol, 2008, 26(9): 1035-1040.
[30] [30] Tiwari D K, Arai Y, Yamanaka M, et al. A fast-and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy[J]. Nat Methods, 2015, 12(6): 515-518.
[31] [31] Shcherbakova D M, Sengupta P, Lippincott-Schwartz J, et al. Photocontrollable fluorescent proteins for superresolution imaging[J]. Annual Review of Biophysics, 2014, 43: 303-329.
[32] [32] Stiel A C, Andresen M, Bock H, et al. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy[J]. Biophys J, 2008, 95(6): 2989-2997.
[33] [33] Lavoie-Cardinal F, Jensen N A, Westphal V, et al. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins[J]. Chemphyschem, 2014, 15(4): 655-663.
[34] [34] Pakhomov A A, Martynov V I. GFP family: structural insights into spectral tuning[J]. Chemistry Biology, 2008, 15(8): 755-764.
Get Citation
Copy Citation Text
Wang Sheng, Chen Xuanze, Chang Lei, Xue Ruiying, Sun Yujie. Structure-Guided Development of Reversibly Photoswitchable Green Fluorescent Proteins Probe[J]. Acta Optica Sinica, 2017, 37(3): 318002
Received: Oct. 31, 2016
Accepted: --
Published Online: Mar. 8, 2017
The Author Email: Sheng Wang (wangsheng9411@sina.com)