Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 2, 129(2022)
Research on the self-assembly and application of liquid crystal polymer poly (p-phenylene terephtalamide)
[1] [1] TANNER D, FITZGERALD J A, PHILLIPS B R. The Kevlar story-an advanced materials case study [J]. Angewandte Chemie International Edition, 1989, 28(5): 649-654.
[2] [2] CHAE H G, KUMAR S. Rigid-rod polymeric fibers [J]. Journal of Applied Polymer Science, 2006, 100(1): 791-802.
[3] [3] GARCíAJ M, GARCíA F C, SERNA F, et al. High-performance aromatic polyamides [J]. Progress in Polymer Science, 2010, 35(5): 623-686.
[5] [5] LU Z Q, JIANG M, ZHANG M Y, et al. Characteristics of PPTA chipped fiber/fibrid and their properties for sheet making [J]. Journal of Engineered Fibers and Fabrics, 2016, 11(1): 1-8.
[6] [6] BITZER T. Honeycomb Technology [M]. London: Chapman & Hall, 1997.
[7] [7] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales [J]. Science, 2002, 295(5564): 2418-2421.
[8] [8] QIU H B, HUDSON Z M, WINNIK M A, et al. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles [J]. Science, 2015, 347(6228): 1329-1332.
[9] [9] PHILP D, STODDART J F. Self-assembly in natural and unnatural systems [J]. Angewandte Chemie International Edition, 1996, 35(11): 1154-1196.
[10] [10] O'LEARY L E R, FALLAS J A, BAKOTA E L, et al. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel [J]. Nature Chemistry, 2011, 3(10): 821-828.
[11] [11] LOPES W A, JAEGER H M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds [J]. Nature, 2001, 414(6865): 735-738.
[12] [12] ZHANG J, LIN W R, LIU A H, et al. Solvent effect on the aggregation behavior of rod-coil diblock copolymers [J]. Langmuir, 2008, 24(8): 3780-3786.
[13] [13] PIOLR, JIA L, GUBELLINI F, et al. Self-assembly of PEG-b-Liquid crystal polymer: The role of smectic order in the formation of nanofibers [J]. Macromolecules, 2007, 40(16): 5625-5627.
[14] [14] LIN W R, ZHANG J, WAN X H, et al. Solvent-induced association and micellization of rod-coil diblock copolymer [J]. Macromolecules, 2009, 42(12): 4090-4098.
[15] [15] LI C Y, TENNETI K K, ZHANG D, et al. Hierarchical assembly of a series of rod-coil block copolymers: Supramolecular LC phase in nanoenviroment [J]. Macromolecules, 2004, 37(8): 2854-2860.
[16] [16] JIANG X Q, ZHAO R Y, CHANG W Y, et al. Highly ordered sub-10 nm patterns based on multichain columns of side-chain liquid crystalline polymers [J]. Macromolecules, 2019, 52(13): 5033-5041.
[17] [17] DESHMUKH P, AHN S K, DE MERXEM L G, et al. Interplay between liquid crystalline order and microphase segregation on the self-assembly of side-chain liquid crystalline brush block copolymers [J]. Macromolecules, 2013, 46(20): 8245-8252.
[18] [18] CHEN J X, LI B W, LI X F, et al. Gradient helical copolymers: synthesis, chiroptical properties, thermotropic liquid crystallinity, and self-assembly in selective organic solvents [J]. Polymer Chemistry, 2018, 9(15): 2002-2010.
[19] [19] BLANAZS A, MADSEN J, BATTAGLIA G, et al. Mechanistic insights for block copolymer morphologies: how do worms form vesicles? [J]. Journal of the American Chemical Society, 2011, 133(41): 16581-16587.
[20] [20] WARREN N J, MYKHAYLYK O O, MAHMOOD D, et al. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies [J]. Journal of the American Chemical Society, 2014, 136(3): 1023-1033.
[21] [21] CHRISTOFF-TEMPESTA T, CHO Y, KIM D Y, et al. Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads [J]. Nature Nanotechnology, 2021, 16(4): 447-454.
[22] [22] KAMPS A C, CATIVO M H M, FRYD M, et al. Self-assembly of amphiphilic conjugated diblock copolymers into one-dimensional nanoribbons [J]. Macromolecules, 2014, 47(1): 161-164.
[23] [23] KATAOKA T, OHISHI T, YOKOZAWA T, et al. Aggregation, gelation instability, and morphologies of diblock copolymers consisting of poly(p-benzamide) and poly(m-benzamide) [J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(15): 1732-1739.
[24] [24] SCHLEUSS T W, ABBEL R, GROSS M, et al. Hockey-puck micelles from oligo(p-benzamide)-b-PEG rod-coil block copolymers [J]. Angewandte Chemie International Edition, 2006, 45(18): 2969-2975.
[25] [25] BADOUX M, DRECHSLER S, PAL S. et al. Facile synthesis of a high molecular weight amphiphilic aramid-ROMP block copolymer [J]. Macromolecules, 2017, 50(23): 9307-9314.
[26] [26] SEYLER H, STORZ C, ABBEL R. et al. A facile synthesis of aramide-peptideamphiphiles [J]. Soft Matter, 2009, 5(13): 2543-2545.
[27] [27] SEYLER H, KILBINGER A F M. Hairy aramide rod-coil copolymers [J]. Macromolecules, 2010, 43(13): 5659-5664.
[28] [28] SEYLER H, KILBINGER A F M. Linear organo-soluble poly (p-benzamide) [J]. Macromolecules, 2009, 42(22): 9141-9146.
[29] [29] YOON H S. Synthesis of fibres by growth-packing [J]. Nature, 1987, 326(6113): 580-582.
[30] [30] YAN H C, LI J L, TIAN W T, et al. A new approach to the preparation of poly (p-phenylene terephthalamide) nanofibers [J]. RSC Advances, 2016, 6(32): 26599-26605.
[31] [31] XIE C J, HE L Y, SHI Y F, et al. From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers [J]. ACS Nano, 2019, 13(7): 7811-7824.
[32] [32] XIE C J, GUO Z X, QIU T,et al. Construction of aramid engineering materials via polymerization-induced para-aramid nanofiber hydrogel [J]. Advanced Materials, 2021, 33(31): 2101280.
[33] [33] SHI Y F, QIU T, TUO X L. The bottom-up synthesis for aramid nanofibers: the influence of copolymerization [J].Journal of Applied Polymer Science, 2020, 137(48): 49589.
[34] [34] SHI Y F, TUO X L.Synthesis of heterocyclic aramid nanofibers and high performance nanopaper [J]. Materials Advances, 2020, 1(4): 595-598.
[35] [35] TIAN W T, QIU T,SHI Y F, et al. The facile preparation of aramid insulation paper from the bottom-up nanofiber synthesis [J]. Materials Letters, 2017, 202: 158-161.
[36] [36] LI J L,TIAN W T, YAN H C, et al. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery [J]. Journal of Applied Polymer Science, 2016, 133(30): 43623.
[40] [40] GAO H L, ZHU Y B, MAO L B, et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure [J]. Nature Communications, 2016, 7(1): 12920.
[42] [42] YANG M, ZHAO N F, CUI Y, et al. Biomimetic architectured graphene aerogel with exceptional strength and resilience [J]. ACS Nano, 2017, 11(7): 6817-6824.
[43] [43] ZHU J, YANG M, EMRE A, et al. Branched aramid nanofibers [J]. Angewandte Chemie International Edition, 2017, 56(39): 11744-11748.
[44] [44] LIU Z W, LYU J, FANG D, et al. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments [J]. ACS Nano, 2019, 13(5): 5703-5711.
[45] [45] ZHANG X K, LI N, HU Z M, et al. Direct fabrication of poly (p-phenylene terephthalamide) aerogel and its composites with great thermal insulation and infrared stealth [J]. Chemical Engineering Journal, 2020, 388: 124310.
[46] [46] WILLIAMS J C, NGUYEN B N, MCCORKLE L, et al. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity [J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1801-1809.
[47] [47] XIE C J,LIU S Y, ZHANG Q G, et al. Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method [J]. ACS Nano, 2021, 15(6): 10000-10009.
[49] [49] HE L Y, QIU T, XIE C J, et al. A phase separation method toward PPTA-polypropylene nanocomposite separator for safe lithium ion batteries [J]. Journal of Applied Polymer Science, 2018, 135(39): 46697.
[50] [50] XIE C J,QIU T, LI J L, et al. Nanoaramid dressed latex particles: the direct synthesis via pickering emulsion polymerization [J]. Langmuir, 2017, 33(32): 8043-8051.
Get Citation
Copy Citation Text
XIE Chun-jie, YANG Shi-xuan, HE Ran, LIU Jian-ning, GUO Zhao-xia, TUO Xin-lin. Research on the self-assembly and application of liquid crystal polymer poly (p-phenylene terephtalamide)[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 129
Category:
Received: Nov. 30, 2021
Accepted: --
Published Online: Mar. 1, 2022
The Author Email: XIE Chun-jie (xiechunjie2010@163.com)