Acta Optica Sinica, Volume. 43, Issue 23, 2306006(2023)

An Anti-Resonance Fiber Supporting Stable Transmission of 130 Orbital Angular Momentum Modes

Zhen Wang and Jingli Wang*
Author Affiliations
  • College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu , China
  • show less
    References(34)

    [1] Ellis A D, Zhao J, Cotter D. Approaching the non-linear Shannon limit[J]. Journal of Lightwave Technology, 28, 423-433(2010).

    [2] Pakarzadeh H, Sharif V. Control of orbital angular momentum of light in optofluidic infiltrated circular photonic crystal fibers[J]. Optics Communications, 438, 18-24(2019).

    [3] Lian Y D, Qi X, Wang Y H et al. OAM beam generation in space and its applications: a review[J]. Optics and Lasers in Engineering, 151, 106923(2022).

    [4] Tandjè A, Yammine J, Dossou M et al. Ring-core photonic crystal fiber for propagation of OAM modes[J]. Optics Letters, 44, 1611-1614(2019).

    [5] Han M Z, Liu Q, Sun Y D et al. A novel nested three-ring-core photonic crystal fiber for OAM transmission[J]. Optik, 270, 169981(2022).

    [6] Kabir M A, Hassan M M, Ahmed K et al. Novel spider web photonic crystal fiber for robust mode transmission applications with supporting orbital angular momentum transmission property[J]. Optical and Quantum Electronics, 52, 1-17(2020).

    [7] Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber[J]. Optics Letters, 31, 3574-3576(2006).

    [8] Tu J J, Liu Z Y, Gao S C et al. Ring-core fiber with negative curvature structure supporting orbital angular momentum modes[J]. Optics Express, 27, 20358-20372(2019).

    [9] Fu H H, Yi Z, Shi Y et al. Circular anti-resonance fibre supporting orbital angular momentum modes with flat dispersion, high purity and low confinement loss[J]. Journal of Modern Optics, 68, 784-791(2021).

    [10] Hassan M M, Abdulrazak L F, Alharbi A G et al. Novel approach of anti-resonant fiber with supporting 64 orbital angular momentum modes for optical communication[J]. Alexandria Engineering Journal, 61, 9891-9900(2022).

    [11] Ma X X, Li J S, Guo H T et al. Single-mode single-polarization chalcogenide negative-curvature hollow-core fibers at 4 μm[J]. Acta Optica Sinica, 43, 1906003(2023).

    [12] Gao S F, Wang Y Y, Ding W et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 9, 2828(2018).

    [13] Hisatomi M, Parker M C, Walker S D. Singular optical fibre featuring refractive index dislocation for chiral waveguiding of high orbital angular momentum light[C], 959-960(2006).

    [14] Shannon R D, Shannon R C, Medenbach O et al. Refractive index and dispersion of fluorides and oxides[J]. Journal of Physical and Chemical Reference Data, 31, 931-970(2002).

    [15] Biswas B, Ahmed K, Paul B K et al. Numerical evaluation of the performance of different materials in nonlinear optical applications[J]. Results in Physics, 13, 102184(2019).

    [16] Hong S, Lee Y S, Choi H et al. Hollow silica photonic crystal fiber guiding 101 orbital angular momentum modes without phase distortion in C+L band[J]. Journal of Lightwave Technology, 38, 1010-1018(2020).

    [17] Liu C, Fu H H, Hu C J et al. Optimization of photonic crystal fibers for transmission of orbital angular momentum modes[J]. Optical and Quantum Electronics, 53, 639(2021).

    [18] Kabir M A, Ahmed K, Hassan M M et al. Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication[J]. Optics Communications, 475, 126192(2020).

    [19] Xu M N, Zhou G Y, Chen C et al. A novel micro-structured fiber for OAM mode and LP mode simultaneous transmission[J]. Journal of Optics, 47, 428-436(2018).

    [20] Lei Y, Xu X, Wang N et al. Numerical analysis of a photonic crystal fiber for supporting 76 orbital angular momentum modes[J]. Journal of Optics, 20, 105701(2018).

    [21] Hassan M M, Kabir M A, Hossain M N et al. Numerical analysis of circular core shaped photonic crystal fiber for orbital angular momentum with efficient transmission[J]. Applied Physics B, 126, 145(2020).

    [22] Ahmad Al-Zahrani F, Ahmed K. Novel design of dual guided photonic crystal fiber for large capacity transmission in high-speed optics communications with supporting good quality OAM and LP modes[J]. Alexandria Engineering Journal, 59, 4889-4899(2020).

    [23] Zhang H, Zhang X G, Li H et al. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission[J]. Optics Communications, 397, 59-66(2017).

    [24] Zhao L J, Jiang H Q, Xu Z N. Vortex fiber supporting adjustable and high-order orbital angular momentum mode[J]. Acta Optica Sinica, 42, 2206001(2022).

    [25] Huang S H, Ma Q C, Chen W C et al. Microstructure ring fiber for supporting higher-order orbital angular momentum modes with flattened dispersion in broad waveband[J]. Applied Physics B, 125, 197(2019).

    [26] Fu H L, Zhu M J, Liu C et al. Photonic crystal fiber supporting 394 orbital angular momentum modes with flat dispersion, low nonlinear coefficient, and high mode quality[J]. Optical Engineering, 61, 026111(2022).

    [27] Fu H H, Liu C, Hu C J et al. Circular photonic crystal fiber supporting 118 orbital angular momentum modes transmission[J]. Optical Engineering, 60, 076102(2021).

    [28] Islam M S, Sultana J, Ahmed K et al. A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime[J]. IEEE Sensors Journal, 18, 575-582(2018).

    [29] Rjeb A, Fathallah H, Chebaane S et al. Design of novel circular lattice photonic crystal fiber suitable for transporting 48 OAM modes[J]. Optoelectronics Letters, 17, 501-506(2021).

    [30] Liu Q, Tai S N, Lu W S et al. Design of pure silica-based photonic crystal fiber for supporting 114 OAM modes transmission[J]. Journal of Optics, 23, 095701(2021).

    [31] Sun K Y, Wu J H, Li Q G. Exploration of RIT/RIC casing technology based on MCVD equipment[J]. Modern Transmission, 54-55(2014).

    [32] Xu S J, Zhang H J, Yang P et al. Progress on the roughness of the inner wall of the air hole of hollow core microstructure optical fiber[J]. Laser & Optoelectronics Progress, 60, 2300003(2023).

    [33] Zhang X, Dong Z H, Yao J Y et al. C+L band 0.38 dB/km ultra-low loss domestic nested tubular hollow anti-resonant fiber[J]. Chinese Journal of Lasers, 49, 1115002(2022).

    [34] Fitt A D, Furusawa K, Monro T M et al. The mathematical modelling of capillary drawing for holey fibre manufacture[J]. Journal of Engineering Mathematics, 43, 201-227(2002).

    Tools

    Get Citation

    Copy Citation Text

    Zhen Wang, Jingli Wang. An Anti-Resonance Fiber Supporting Stable Transmission of 130 Orbital Angular Momentum Modes[J]. Acta Optica Sinica, 2023, 43(23): 2306006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Aug. 7, 2023

    Accepted: Oct. 7, 2023

    Published Online: Dec. 12, 2023

    The Author Email: Wang Jingli (jlwang@njupt.edu.cn)

    DOI:10.3788/AOS231373

    Topics