Laser & Optoelectronics Progress, Volume. 57, Issue 20, 201001(2020)

Multi-Branch Person Re-Identification Based on Multi-Scale Attention

Cong Li, Min Jiang*, and Jun Kong
Author Affiliations
  • Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • show less
    Figures & Tables(12)
    Multi-branch person re-identification framework based on multi-scale attention mechanism
    Structure of multi-scale attention module
    Structure of multi-scale attention-aware feature DropBlock module
    Comparison of two partition strategies
    • Table 1. Effects of multi-scale attention module unit: %

      View table

      Table 1. Effects of multi-scale attention module unit: %

      MethodMarket-1501DukeMTMC-ReID
      Rank-1mAPRank-1mAP
      Baseline88.6371.5582.2764.57
      Baseline(with MSA)90.1573.0384.4767.02
      Ours(without MSA)94.4286.6589.7479.18
      Ours95.3788.0290.5780.92
    • Table 2. Effects of multi-scale attention-aware feature DropBlock module unit: %

      View table

      Table 2. Effects of multi-scale attention-aware feature DropBlock module unit: %

      MethodMarket-1501DukeMTMC-ReID
      Rank-1mAPRank-1mAP
      Baseline88.6371.5582.2764.57
      Baseline(with BDB)92.6884.5386.9475.33
      Baseline(with MSA-FD)93.7685.4288.6076.74
      Ours(without MSA-FD)94.9486.7289.5979.61
      Ours95.3788.0290.5780.92
    • Table 3. Effects of different partition strategies unit: %

      View table

      Table 3. Effects of different partition strategies unit: %

      Partition strategyMarket-1501
      Rank-1mAP
      UP branch (H=8)94.1786.07
      FP branch (H=9)94.4386.29
      FP branch (H=10)94.8386.58
      FP branch (H=11)94.7186.60
      FP branch (H=12)94.5086.42
    • Table 4. Effect of joint multiple local feature strategy unit: %

      View table

      Table 4. Effect of joint multiple local feature strategy unit: %

      MethodMarket-1501DukeMTMC-ReID
      Rank-1mAPRank-1mAP
      Baseline88.6371.5582.2764.57
      Baseline+MSA-FD branch93.7685.4288.6076.74
      Baseline+FP branch94.8386.5889.5079.47
      All95.3788.0290.5780.92
    • Table 5. Comparison of results on Market-1501 unit: %

      View table

      Table 5. Comparison of results on Market-1501 unit: %

      Partition strategyMarket-1501
      Rank-1mAP
      MSCAN[23]80.3157.53
      MGCAM[22]83.5574.25
      HA-CNN[11]91.2075.70
      AACN[9]85.9066.87
      SPReID[25]90.8076.56
      MLFN[24]90.0074.30
      PCB[5]93.8081.60
      MGN[6]95.7086.90
      Ours95.3788.02
      Ours+Re-ranking96.3594.50
    • Table 6. Comparison of results on DukeMTMC-ReID unit: %

      View table

      Table 6. Comparison of results on DukeMTMC-ReID unit: %

      MethodDukeMTMC-ReID
      Rank-1mAP
      JLML[27]73.3056.40
      SVDNet-ResNet50[28]76.7056.80
      AACN[9]76.8459.25
      SPReID[25]80.4863.27
      HACNN[11]80.5063.80
      MLFN[24]81.0062.80
      PCB[5]83.3069.20
      MGN[6]88.7078.40
      Ours90.5780.92
      Ours+Re-ranking93.0090.74
    • Table 7. Comparison of results on CUHK03 unit: %

      View table

      Table 7. Comparison of results on CUHK03 unit: %

      MethodCUHK03(Labeled)CUHK03(Detected)
      Rank-1mAPRank-1mAP
      DPFL[29]43.0040.5040.7037.00
      MGCAM[22]49.2949.8946.2946.74
      HA-CNN[11]44.4041.0041.7038.60
      MLFN[24]54.1049.2052.8047.80
      SVDNet-ResNet50[28]40.9037.8041.5037.30
      PCB[5]--63.7057.50
      MGN[6]68.0067.4066.8066.00
      Ours77.4375.8475.5773.28
      Ours+Re-ranking85.3087.1583.6485.17
    • Table 8. Comparison of computation speed on Market-1501

      View table

      Table 8. Comparison of computation speed on Market-1501

      MethodComputationtime perbatch /sRank-1 /%mAP /%
      Mobilenet_v2[30]0.13887.068.5
      HA-CNN[11]0.23791.275.7
      MLFN[24]0.58590.074.3
      PCB[5]0.33193.881.6
      MGN[6]0.56195.786.9
      Ours0.54495.3788.02
    Tools

    Get Citation

    Copy Citation Text

    Cong Li, Min Jiang, Jun Kong. Multi-Branch Person Re-Identification Based on Multi-Scale Attention[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 6, 2020

    Accepted: Mar. 12, 2020

    Published Online: Oct. 13, 2020

    The Author Email: Min Jiang (minjiang@jiangnan.edu.cn)

    DOI:10.3788/LOP57.201001

    Topics