Laser & Optoelectronics Progress, Volume. 56, Issue 11, 111007(2019)

Hyperspectral Image Classification Based on Hypergraph and Convolutional Neural Network

Yuzhen Liu1、**, Zhengquan Jiang2、*, Fei Ma1, and Chunhua Zhang3
Author Affiliations
  • 1 School of Electronics and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2 Graduate School, Liaoning University of Engineering and Technology, Huludao, Liaoning 125105, China
  • 3 Liaoning Unicom Fuxin Branch, Fuxin, Liaoning 123100, China
  • show less
    Figures & Tables(13)
    Schematic of G-CNN classification model
    Relationship between spectral and spatial information of hyperspectral images
    Super-edge construction based on spectral features
    Hypergraph construction of spatial relationship. (a) 4 neighborhood; (b) 8 neighborhood; (c) 16 neighborhood; (d) 24 neighborhood
    Schematic of CNN classification model
    Effect of number of training samples on accuracy of algorithm
    Influence of experimental parameter change on experimental precision. (a) P; (b) U; (c) δ
    Classification results by different algorithms on Indian Pines dataset. (a) Ground-truth; (b) SVM; (c) G-SVM; (d) Shallower CNN; (e) Contextual Deep CNN; (f) SPPF CNN; (g) G-CNN; (h) label
    • Table 1. Number of training samples and test samples in Indian Pines dataset

      View table

      Table 1. Number of training samples and test samples in Indian Pines dataset

      No.ClassNumber oftraining samplesNumber ofteat samples
      1Corn-notill2001228
      2Corn-mintill200630
      3Grass-pasture200283
      4Hay-windrowed200278
      5Soybean-notill200772
      6Soybean-mintill2002255
      7Soybean-clean200393
      8Woods2001065
      Total16006904
    • Table 2. Parameter setting of convolutional neural network

      View table

      Table 2. Parameter setting of convolutional neural network

      Datasett1s1t2s2t3s3t4s4N6N7
      Indian Pines21122211221008
      University of Pavia10122101221009
      Salinas211222112210016
    • Table 3. Training time and test time for each algorithm on Indian Pines datasets

      View table

      Table 3. Training time and test time for each algorithm on Indian Pines datasets

      ItemSVMG-SVMShallower CNNContextual Deep CNNSPPF CNNG-CNN
      Training time0.214.74287.16431.712704.34337.08
      Testing time1.120.920.233.3519.570.29
    • Table 4. Overall classification accuracy of each model on three datasets%

      View table

      Table 4. Overall classification accuracy of each model on three datasets%

      AlgorithmIndianPinesUniversityof PaviaSalinas
      SVM85.8686.8387.12
      G-SVM89.4090.9190.97
      Shallower CNN[12]90.1292.3492.18
      Contextual Deep CNN[13]93.3095.0195.47
      SPPF CNN[14]94.8791.7494.21
      G-CNN96.6397.4297.27
    • Table 5. G-CNN classification results%

      View table

      Table 5. G-CNN classification results%

      ParameterIndianPinesUniversityof PaviaSalinas
      OA96.6397.4297.27
      AA96.8797.8397.44
      Kappa96.5497.1897.12
    Tools

    Get Citation

    Copy Citation Text

    Yuzhen Liu, Zhengquan Jiang, Fei Ma, Chunhua Zhang. Hyperspectral Image Classification Based on Hypergraph and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 28, 2018

    Accepted: Oct. 29, 2018

    Published Online: Jun. 13, 2019

    The Author Email: Yuzhen Liu (825807294@qq.com), Zhengquan Jiang (29360942@qq.com)

    DOI:10.3788/LOP56.111007

    Topics