Acta Optica Sinica, Volume. 42, Issue 13, 1324001(2022)
Analysis of Mode Characteristics of Hybrid Dielectric Nano-Parallel Wires Based Waveguide Coated with Graphene
[1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[2] Zhang J X, Zhang L D, Xu W. Surface plasmon polaritons: physics and applications[J]. Journal of Physics D, 45, 113001(2012).
[3] Chu H S, Li E P, Bai P et al. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components[J]. Applied Physics Letters, 96, 221103(2010).
[4] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[5] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005).
[6] Yang X X, Sun Z P, Low T et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy[J]. Advanced Materials, 30, e1704896(2018).
[7] Hu H, Yang X X, Zhai F et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nature Communications, 7, 12334(2016).
[8] Wu M, Liang X Y, Sun D X et al. Design of asymmetric rectangular ring resonance cavity electrically adjustable filter based on surface plasmon polaritons[J]. Acta Optica Sinica, 40, 1423001(2020).
[9] Teng D, Wang K, Li Z et al. Graphene gap plasmonic waveguide for deep-subwavelength transmission of mid-infrared waves[J]. Acta Optica Sinica, 40, 0623002(2020).
[10] Gao Y X, Ren G B, Zhu B F et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 39, 5909-5912(2014).
[11] Gao Y X, Ren G B, Zhu B F et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 22, 24322-24331(2014).
[12] Cheng X, Xue W R, Wei Z Z et al. Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire[J]. Acta Physica Sinica, 68, 058101(2019).
[13] Zhu B F, Ren G B, Yang Y et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 10, 839-845(2015).
[14] Ye S, Wang Z X, Sun C R et al. Plasmon-phonon-polariton modes and field enhancement in graphene-coated hexagon boron nitride nanowire pairs[J]. Optics Express, 26, 23854-23867(2018).
[15] Wu D, Tian J P. Study on the plasmonic characteristics of bow-tie type graphene-coated nanowire pair[J]. Optik, 156, 689-695(2018).
[16] Tengda, Guo J K, Yang Y D et al. Study of modal properties in graphene-coated nanowires integrated with substrates[J]. Applied Physics B, 126, 1-9(2020).
[17] Peng Y L, Xue W R, Wei Z Z et al. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides[J]. Acta Physica Sinica, 67, 038102(2018).
[18] Xing R, Jian S S. The graphene square waveguide with small normalized mode area[J]. IEEE Photonics Technology Letters, 29, 1643-1646(2017).
[19] Dong H Y, Qin X R, Xue W R et al. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide[J]. Acta Physica Sinica, 69, 238102(2020).
[20] Huang Y X, Zhang L, Yin H et al. Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation[J]. Optics Letters, 42, 2078-2081(2017).
[21] Wang X, Wang J, Ma T et al. Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition[J]. Chinese Physics B, 30, 014207(2021).
[22] Cong X, Huang Y X, Zhang M et al. Graphene-coated nanowires with drop-shaped cross section for the low loss propagation of THz waves with sub-micron mode widths[J]. Laser Physics Letters, 15, 096001(2018).
[23] Teng D, Wang Y C, Xu T Z et al. Symmetric graphene dielectric nanowaveguides as ultra-compact photonic structures[J]. Nanomaterials, 11, 1281(2021).
[24] Yan H Z, Li S Y, Xie Z Y et al. Design of PANDA ring-core fiber with 10 polarization-maintaining modes[J]. Photonics Research, 5, 1-5(2016).
[25] Cao Z X, Yao B C, Qin C Y et al. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity[J]. Light: Science & Applications, 8, 107(2019).
[26] Kim J T, Kim J, Choi H et al. Graphene-based photonic devices for soft hybrid optoelectronic systems[J]. Nanotechnology, 23, 344005(2012).
[27] Yang J F, Yang J J, Deng W et al. Transmission properties and molecular sensing application of CGPW[J]. Optics Express, 23, 32289-32299(2015).
[28] Zeng X D, Liao Z Y, Al-Amri M et al. Controllable waveguide via dielectric cylinder covered with graphene: tunable entanglement[J]. Europhysics Letters, 115, 14002(2016).
[29] Nikitin A Y, Guinea F, Garcia-Vidal F J et al. Fields radiated by a nanoemitter in a graphene sheet[J]. Physical Review B, 84, 195446(2011).
[30] Chen B G, Meng C, Yang Z Y et al. Graphene coated ZnO nanowire optical waveguides[J]. Optics Express, 22, 24276-24285(2014).
[31] Chen K, Zhou X, Cheng X et al. Graphene photonic crystal fibre with strong and tunable light-matter interaction[J]. Nature Photonics, 13, 754-759(2019).
[32] He X Q, Ning T G, Lu S H et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement[J]. Optics Express, 26, 10109-10118(2018).
[33] Hajati M, Hajati Y. Deep subwavelength confinement of mid-infrared plasmon modes by coupling graphene-coated nanowire with a dielectric substrate[J]. Plasmonics, 13, 403-412(2018).
Get Citation
Copy Citation Text
Ning Li, Wenrui Xue, Huiying Dong, Huihui Li, Changyong Li. Analysis of Mode Characteristics of Hybrid Dielectric Nano-Parallel Wires Based Waveguide Coated with Graphene[J]. Acta Optica Sinica, 2022, 42(13): 1324001
Category: Optics at Surfaces
Received: Oct. 15, 2021
Accepted: Dec. 30, 2021
Published Online: Jul. 15, 2022
The Author Email: Xue Wenrui (wrxue@sxu.edu.cn)