Acta Optica Sinica, Volume. 42, Issue 14, 1415001(2022)

Unbalanced Defocus Dataset Construction Based on Stereo Image Pair Dataset

Yunpeng Li1,2, Baozhen Ge1,2、*, Qingguo Tian1,2, and Lü Qieni1,2
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Opto-Electronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(11)
    Depth-dependent radius of blur kernel
    Data samples in unbalanced defocus stereo vision dataset. (a1)-(a6) Left and right blur images, left and right clear images, and left and right disparity maps of No. 0 data; (b1)-(b6) left and right blur images, left and right clear images, and left and right disparity maps of No. 2000 data
    Visualized deblurred results of synthetic image. (a1)-(a5) Left blur image, deblurred left images by Nah, DavaNet, and BLNet, and clear left image of No. 0 data; (b1)-(b5) right blur image, deblurred right images by Nah, DavaNet, and BLNet, and clear right image of No. 0 data; (c1)-(c5) left blur image, deblurred left images by Nah, DavaNet, and BLNet, and clear left image of No. 2000 data; (d1)-(d5) right blur image, deblurred right images by Nah, DavaNet, and BLNet, and clear right image of No. 2000 data; (e1)-(e5) left blur image, deblurred left images by Nah, DavaNet, and BLNet, and clear left image of No. 4000 data; (f1)-(f5) right blur image, deblurred right images by Nah, DavaNet, and BLNet, and clear right image of No. 4000 data
    Visualized deblurred results of real-scene images in Middlebury 2014 dataset. (a1)-(a5) Left blur image, deblurred left images by Nah, DavaNet, and BLNet, and clear left image of Adirondack; (b1)-(b5) right blur image, deblurred right images by Nah, DavaNet, and BLNet, and clear right image of Adirondack; (c1)-(c5) left blur image, deblurred left images by Nah, DavaNet, and BLNet, and clear left image of Motorcycle; (d1)-(d5) right blur image, deblurred right images by Nah, DavaNet, and BLNet, and clear right image of Motorcycle
    Visualized stereo matching results of synthetic image. (a1)-(a5) Left and right blur images, disparity maps of PSMNet-C and PSMNet-B, and ground-truth disparity map of No. 0 data; (b1)-(b5) left and right blur images, disparity maps of PSMNet-C and PSMNet-B, and ground-truth disparity map of No. 2000 data; (c1)-(c5) left and right blur images, disparity maps of PSMNet-C and PSMNet-B, and ground-truth disparity map of No. 4000 data
    Visualized stereo matching results of real-scene images in Middlebury 2014 dataset. (a1)-(a5) Left and right blur images, disparity maps of PSMNet-C and PSMNet-B, and ground-truth disparity map of Adirondack; (b1)-(b5) left and right blur images, disparity maps of PSMNet-C and PSMNet-B, and ground-truth disparity map of Motorcycle
    Test on real defocus blur images. (a) Stereo vision cameras; (b) experimental scene for test; (c)(d) left and right blur images; (e)(f) deblurred left and right images by BLNet; (g) disparity map calculated by PSMNet-B; (h) reconstructed 3D point clouds
    • Table 1. Deblurred results of synthetic image

      View table

      Table 1. Deblurred results of synthetic image

      NumberNahDavaNetBLNet
      PSNRSSIMPSNRSSIMPSNRSSIM
      Average35.510.9534.660.9332.750.93
      036.300.9435.500.9333.490.93
      50039.200.9737.870.9635.380.96
      100037.220.9736.740.9633.580.95
      150034.470.9333.420.9232.290.91
      200036.020.9534.970.9432.440.93
      250035.000.9433.990.9231.460.91
      300033.540.9232.800.9031.950.90
      350033.520.9332.710.9231.650.92
      400034.320.9633.930.9532.470.94
    • Table 2. Deblurred results of real-scene images in Middlebury 2014 dataset

      View table

      Table 2. Deblurred results of real-scene images in Middlebury 2014 dataset

      SceneNahDavaNetBLNet
      PSNRSSIMPSNRSSIMPSNRSSIM
      Average33.970.9332.770.9130.300.90
      Adirondack38.280.9636.270.9432.680.94
      Motorcycle30.010.9229.550.9127.470.90
      Piano35.360.9533.820.9231.930.92
      Pipes31.790.9031.550.8930.000.89
      Playroom32.000.9431.040.9130.550.91
      Playtable33.310.8730.970.8329.350.82
      Recycle37.540.9636.100.9431.000.95
      Shelves33.450.9432.880.9229.410.92
    • Table 3. Stereo matching results of the synthetic data

      View table

      Table 3. Stereo matching results of the synthetic data

      NumberPSMNet-CPSMNet-B
      D3 /%EPE /pixelD3 /%EPE /pixel
      Average34.496.969.162.01
      040.909.2513.202.63
      50021.303.162.200.74
      100014.905.6310.303.62
      150042.609.7113.502.53
      200046.5011.6110.201.71
      250029.305.537.201.39
      300037.904.8213.102.73
      350037.306.778.301.81
      400039.706.204.400.90
    • Table 4. Stereo matching results of real-scene images from Middlebury 2014 dataset

      View table

      Table 4. Stereo matching results of real-scene images from Middlebury 2014 dataset

      ScenePSMNet-CPSMNet-B
      D3 /%EPE /pixelD3 /%EPE /pixel
      Average43.737.2126.485.64
      Adirondack42.507.1115.202.97
      Motorcycle40.107.0620.704.42
      Piano33.403.8927.205.45
      Pipes57.2013.5625.606.95
      Playroom44.607.9239.309.91
      Playtable37.005.1625.305.87
      Recycle31.903.9617.802.77
      Shelves63.109.0140.706.81
    Tools

    Get Citation

    Copy Citation Text

    Yunpeng Li, Baozhen Ge, Qingguo Tian, Lü Qieni. Unbalanced Defocus Dataset Construction Based on Stereo Image Pair Dataset[J]. Acta Optica Sinica, 2022, 42(14): 1415001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 15, 2021

    Accepted: Jan. 20, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Ge Baozhen (gebz@tju.edu.cn)

    DOI:10.3788/AOS202242.1415001

    Topics