Chinese Journal of Lasers, Volume. 49, Issue 13, 1312001(2022)

Two-Party Semi-Quantum Key Agreement Protocol Based on G-Like States

Yefeng He, Yibo Pang*, Man Di, Yuru Yue, Guoqing Li, and Jixiang Liu
Author Affiliations
  • School of Cyberspace Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, Shaanxi, China
  • show less
    References(29)

    [1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 560, 7-11(2014).

    [2] Kovalenko O, Ra Y S, Cai Y et al. Frequency-multiplexed entanglement for continuous-variable quantum key distribution[J]. Photonics Research, 9, 12002351(2021).

    [3] Xue Y, Chen W, Wang S et al. Airborne quantum key distribution: a review[J]. Chinese Optics Letters, 19, 122702(2021).

    [4] Zheng X D, Zhang P Y, Ge R Y et al. Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution[J]. Advanced Photonics, 3, 055002(2021).

    [5] He Y F, Zhao Y K, Li C Y et al. Measurement-device-independent quantum key distribution of finite detector’s dead time in heralded pair coherent state[J]. Acta Optica Sinica, 40, 2427001(2020).

    [6] He Y F, Bai Q, Li L N et al. Measurement-device-independent quantum key distribution protocols based on multiple crystal heralded source[J]. Acta Optica Sinica, 41, 1627001(2021).

    [7] He Y F, Li C Y, Guo J R et al. Passive measurement-device-independent quantum key distribution based on heralded pair coherent states[J]. Chinese Journal of Lasers, 47, 0912002(2020).

    [8] He Y F, Ma W P. Quantum key agreement protocols with four-qubit cluster states[J]. Quantum Information Processing, 14, 3483-3498(2015).

    [9] Shukla C, Alam N, Pathak A. Protocols of quantum key agreement solely using Bell states and Bell measurement[J]. Quantum Information Processing, 13, 2391-2405(2014).

    [10] Huang W, Wen Q Y, Liu B et al. Quantum key agreement with EPR pairs and single-particle measurements[J]. Quantum Information Processing, 13, 649-663(2014).

    [11] Liao Q, Liu H J, Zhu L J et al. Quantum secret sharing using discretely modulated coherent states[J]. Physical Review A, 103, 032410(2021).

    [12] Wu X D, Wang Y J, Huang D. Passive continuous-variable quantum secret sharing using a thermal source[J]. Physical Review A, 101, 022301(2020).

    [13] Sun Z, Song L Y, Huang Q et al. Toward practical quantum secure direct communication: a quantum-memory-free protocol and code design[J]. IEEE Transactions on Communications, 68, 5778-5792(2020).

    [14] Li T, Long G L. Quantum secure direct communication based on single-photon Bell-state measurement[J]. New Journal of Physics, 22, 063017(2020).

    [15] Zhou N, Zeng G, Xiong J. Quantum key agreement protocol[J]. Electronics Letters, 40, 1149-1150(2004).

    [16] Chong S K, Hwang T. Quantum key agreement protocol based on BB84[J]. Optics Communications, 283, 1192-1195(2010).

    [17] He Y F, Ma W P. Two quantum key agreement protocols immune to collective noise[J]. International Journal of Theoretical Physics, 56, 328-338(2017).

    [18] Shi R H, Zhong H. Multi-party quantum key agreement with Bell states and bell measurements[J]. Quantum Information Processing, 12, 921-932(2013).

    [19] Liu B, Gao F, Huang W et al. Multiparty quantum key agreement with single particles[J]. Quantum Information Processing, 12, 1797-1805(2013).

    [20] Sun Z W, Zhang C, Wang B H et al. Improvements on “multiparty quantum key agreement with single particles”[J]. Quantum Information Processing, 12, 3411-3420(2013).

    [21] He Y F, Ma W P. Two-party quantum key agreement against collective noise[J]. Quantum Information Processing, 15, 5023-5035(2016).

    [22] Shukla C, Thapliyal K, Pathak A. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue[J]. Quantum Information Processing, 16, 295(2017).

    [23] Liu W J, Chen Z Y, Ji S et al. Multi-party semi-quantum key agreement with delegating quantum computation[J]. International Journal of Theoretical Physics, 56, 3164-3174(2017).

    [24] Zhou N R, Zhu K N, Wang Y Q. Three-party semi-quantum key agreement protocol[J]. International Journal of Theoretical Physics, 59, 663-676(2020).

    [25] DiCarlo L, Reed M D, Sun L et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit[J]. Nature, 467, 574-578(2010).

    [26] Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons[J]. Physics Letters A, 351, 23-25(2006).

    [27] Deng F G, Li X H, Zhou H Y et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack[J]. Physical Review A, 72, 044302(2005).

    [28] Chen L Y, Gong L H, Zhou N R. Two semi-quantum key distribution protocols with G-like states[J]. International Journal of Theoretical Physics, 59, 1884-1896(2020).

    [29] Cabello A. Quantum key distribution in the Holevo limit[J]. Physical Review Letters, 85, 5635-5638(2000).

    Tools

    Get Citation

    Copy Citation Text

    Yefeng He, Yibo Pang, Man Di, Yuru Yue, Guoqing Li, Jixiang Liu. Two-Party Semi-Quantum Key Agreement Protocol Based on G-Like States[J]. Chinese Journal of Lasers, 2022, 49(13): 1312001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: quantum optics

    Received: Oct. 18, 2021

    Accepted: Dec. 13, 2021

    Published Online: Jun. 13, 2022

    The Author Email: Pang Yibo (122979357@qq.com)

    DOI:10.3788/CJL202249.1312001

    Topics