NUCLEAR TECHNIQUES, Volume. 46, Issue 9, 090505(2023)

Application of multi-head attention mechanism with embedded positional encoding in amplitude estimation of stacked pulses

Lin TANG1,2,3, Shuang ZHOU1, Yong LI1, Xianli LIAO1、*, and Yuepeng LI1,4
Author Affiliations
  • 1College of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610106, China
  • 2National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230039, China
  • 3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 4School of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
  • show less
    Figures & Tables(10)
    Principle of stacking pulse separation and pulse amplitude estimation
    Structure diagram of the transformer model
    Internal structures of the encoder and decoder
    Principle of positional encoding (color online) (a) Binary encoding, (b) Sine function encoding
    Calculation process of Multi-head attention
    Iterative graph of the loss and accuracy for the training and validation sets during model training
    (a) Measured pulse sequence diagram, (b) Triangulation results for the pulse sequence, (c) Comparison chart of the estimated random pulse amplitude (color online)
    • Table 1. Specific characteristics of the blocks

      View table
      View in Article

      Table 1. Specific characteristics of the blocks

      模块名Name内容Content矩阵计算Matrix calculation矩阵维度Matrix dimension
      模块A Block AInput matrix SS×Wi=Q2×4
      模块B Block BWeight matrix Wi4×3
      模块C Block CAttention matrix Q2×3
      模块D Block DAttention headZi×W=Z2×24
      模块E Block EWeight matrix W24×4
      模块F Block FOutput matrix Z2×4
    • Table 2. Comparison of estimated and real values of overlapping pulses in the deep learning model

      View table
      View in Article

      Table 2. Comparison of estimated and real values of overlapping pulses in the deep learning model

      脉冲

      Pulse

      是否堆积

      Pile-up or not

      真实值

      Real value

      三角成形值

      Triangulation

      成形相对误差Relative error of Triangulation / %模型估计值Estimated value of model模型相对误差Relative error of model / %
      P1No322.307 7308.874.17320.230.64
      P2Yes615.384 6568.217.67610.480.80
      P31 167.692618.7447.011 164.980.23
      P4Yes910.769 3849.856.69908.560.24
      P5710.000 1432.6039.07708.520.21
      P6Yes644.615 4557.8813.46643.190.22
      P71 076.923627.6341.721 070.480.60
      P8No386.153 9363.085.98380.861.37
      P9No622.307 7571.758.12621.640.11
      P10Yes611.538 5556.179.05607.770.62
      P11992.307 7666.0432.88989.540.28
      P12Yes780.769 3732.136.23777.570.41
      P13956.923 1829.8913.28949.870.74
      P14No730.769 3675.827.52722.751.10
      P15No639.230 8569.3510.93634.710.71
    • Table 3. Comparison table of parameter estimation effects of the deep learning model

      View table
      View in Article

      Table 3. Comparison table of parameter estimation effects of the deep learning model

      序号Number样品类型Sample type堆积程度Stacking degree堆积类型Stacking type平均相对误差Average relative error / %
      1

      粉末铁矿样品

      Powder iron ore sample

      10%双脉冲Double pulse0.21
      230%双脉冲Double pulse0.32
      360%双脉冲Double pulse3.42
      490%双脉冲Double pulse0.85
      5

      粉末岩石样品

      Powder rock samples

      10%双脉冲Double pulse0.19
      630%双脉冲Double pulse0.48
      760%双脉冲Double pulse0.65
      890%双脉冲Double pulse0.98
    Tools

    Get Citation

    Copy Citation Text

    Lin TANG, Shuang ZHOU, Yong LI, Xianli LIAO, Yuepeng LI. Application of multi-head attention mechanism with embedded positional encoding in amplitude estimation of stacked pulses[J]. NUCLEAR TECHNIQUES, 2023, 46(9): 090505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 23, 2023

    Accepted: --

    Published Online: Oct. 8, 2023

    The Author Email:

    DOI:10.11889/j.0253-3219.2023.hjs.46.090505

    Topics