Chinese Journal of Lasers, Volume. 50, Issue 15, 1507401(2023)
Organic Polymer Dots and Their Bio‐Optical Applications
[1] Tadepalli S, Slocik J M, Gupta M K et al. Bio-optics and bio-inspired optical materials[J]. Chemical Reviews, 117, 12705-12763(2017).
[2] Zhang Y, Zhang G P, Zeng Z L et al. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy[J]. Chemical Society Reviews, 51, 566-593(2022).
[3] Zhao L F, Zhao C, Zhou J S et al. Conjugated polymer-based luminescent probes for ratiometric detection of biomolecules[J]. Journal of Materials Chemistry B, 10, 7309-7327(2022).
[4] Qiu X, Xu J Y, dos Santos M C et al. Multiplexed biosensing and bioimaging using lanthanide-based time-gated Förster resonance energy transfer[J]. Accounts of Chemical Research, 55, 551-564(2022).
[5] Giljohann D A, Mirkin C A. Drivers of biodiagnostic development[J]. Nature, 462, 461-464(2009).
[6] Chen Y T, Lee Y C, Lai Y H et al. Review of integrated optical biosensors for point-of-care applications[J]. Biosensors, 10, 209(2020).
[7] Holzinger M, le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review[J]. Frontiers in Chemistry, 2, 63(2014).
[8] Cavalcante F T T, de A Falcão I R, da S Souza J E et al. Designing of nanomaterials-based enzymatic biosensors: synthesis, properties, and applications[J]. Electrochem, 2, 149-184(2021).
[9] Kenry, Duan Y K, Liu B. Recent advances of optical imaging in the second near-infrared window[J]. Advanced Materials, 30, 1802394(2018).
[10] Haupt K, Rangel P X M, Bui B T S. Molecularly imprinted polymers: antibody mimics for bioimaging and therapy[J]. Chemical Reviews, 120, 9554-9582(2020).
[11] de Lázaro I, Mooney D J. Obstacles and opportunities in a forward vision for cancer nanomedicine[J]. Nature Materials, 20, 1469-1479(2021).
[12] Barreto J A, O’Malley W, Kubeil M et al. Nanomaterials: applications in cancer imaging and therapy[J]. Advanced Materials, 23, H18-H40(2011).
[13] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods, 5, 763-775(2008).
[14] Riahin C, Meares A, Esemoto N N et al. Hydroporphyrin-doped near-infrared-emitting polymer dots for cellular fluorescence imaging[J]. ACS Applied Materials & Interfaces, 14, 20790-20801(2022).
[15] Zhang F, Tang B Z. Near-infrared luminescent probes for bioimaging and biosensing[J]. Chemical Science, 12, 3377-3378(2021).
[16] Wang X W, Zhong X Y, Li J X et al. Inorganic nanomaterials with rapid clearance for biomedical applications[J]. Chemical Society Reviews, 50, 8669-8742(2021).
[17] Pei P, Chen Y, Sun C X et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging[J]. Nature Nanotechnology, 16, 1011-1018(2021).
[18] Zhou J J, Chizhik A I, Chu S et al. Single-particle spectroscopy for functional nanomaterials[J]. Nature, 579, 41-50(2020).
[19] Chung Y H, Cai H, Steinmetz N F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications[J]. Advanced Drug Delivery Reviews, 156, 214-235(2020).
[20] Wu Y, Ali M R K, Chen K C et al. Gold nanoparticles in biological optical imaging[J]. Nano Today, 24, 120-140(2019).
[21] Meng Z H, Hou W Y, Zhou H et al. Therapeutic considerations and conjugated polymer-based photosensitizers for photodynamic therapy[J]. Macromolecular Rapid Communications, 39, 1700614(2018).
[22] Zhuang Y L, Ren X L, Che X T et al. Organic photoresponsive materials for information storage: a review[J]. Advanced Photonics, 3, 014001(2020).
[23] de Arquer F P G, Talapin D V, Klimov V I et al. Semiconductor quantum dots: technological progress and future challenges[J]. Science, 373, eaaz8541(2021).
[24] Ni H W, Wang Y L, Tang T et al. Quantum dots assisted in vivo two-photon microscopy with NIR-II emission[J]. Photonics Research, 10, 189-196(2022).
[25] Liu J J, Li R, Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications[J]. ACS Central Science, 6, 2179-2195(2020).
[26] Chen B, Wang F. Emerging frontiers of upconversion nanoparticles[J]. Trends in Chemistry, 2, 427-439(2020).
[27] Peng Q, Shuai Z G. Molecular mechanism of aggregation-induced emission[J]. Aggregate, 2, e91(2021).
[28] Zhang J Y, Zhao X Q, Shen H C et al. White-light emission from organic aggregates: a review[J]. Advanced Photonics, 4, 014001(2021).
[29] Mayder D M, Tonge C M, Nguyen G D et al. Polymer dots with enhanced photostability, quantum yield, and two-photon cross-section using structurally constrained deep-blue fluorophores[J]. Journal of the American Chemical Society, 143, 16976-16992(2021).
[30] Wu C F, Chiu D T. Highly fluorescent semiconducting polymer dots for biology and medicine[J]. Angewandte Chemie International Edition, 52, 3086-3109(2013).
[31] Massey M, Wu M, Conroy E M et al. Mind your P’s and Q’s: the coming of age of semiconducting polymer dots and semiconductor quantum dots in biological applications[J]. Current Opinion in Biotechnology, 34, 30-40(2015).
[32] Chabok A, Shamsipur M, Yeganeh-Faal A et al. A highly selective semiconducting polymer dots-based “off-on” fluorescent nanoprobe for iron, copper and histidine detection and imaging in living cells[J]. Talanta, 194, 752-762(2019).
[33] Shi X M, Mei L P, Wang Q et al. Energy transfer between semiconducting polymer dots and gold nanoparticles in a photoelectrochemical system: a case application for cathodic bioanalysis[J]. Analytical Chemistry, 90, 4277-4281(2018).
[34] Kuo S Y, Li H H, Wu P J et al. Dual colorimetric and fluorescent sensor based on semiconducting polymer dots for ratiometric detection of lead ions in living cells[J]. Analytical Chemistry, 87, 4765-4771(2015).
[35] Cai L P, Deng L Y, Huang X Y et al. Catalytic chemiluminescence polymer dots for ultrasensitive in vivo imaging of intrinsic reactive oxygen species in mice[J]. Analytical Chemistry, 90, 6929-6935(2018).
[36] Wang N N, Chen L Z, Chen W W et al. Potential- and color-resolved electrochemiluminescence of polymer dots for array imaging of multiplex microRNAs[J]. Analytical Chemistry, 93, 5327-5333(2021).
[37] Li Q Y, Wang Y L, Yu G P et al. Fluorescent polymer dots and graphene oxide based nano complexes for off-on detection of metalloproteinase-9[J]. Nanoscale, 11, 20903-20909(2019).
[38] Peng H S, Chiu D T. Soft fluorescent nanomaterials for biological and biomedical imaging[J]. Chemical Society Reviews, 44, 4699-4722(2015).
[39] Ong S Y, Zhang C Y, Dong X et al. Recent advances in polymeric nanoparticles for enhanced fluorescence and photoacoustic imaging[J]. Angewandte Chemie International Edition, 60, 17797-17809(2021).
[40] Jiang Y F, Hu Q Z, Chen H B et al. Dual-mode superresolution imaging using charge transfer dynamics in semiconducting polymer dots[J]. Angewandte Chemie International Edition, 59, 16173-16180(2020).
[41] Yin C, Tai X Y, Li X Z et al. Side chain engineering of semiconducting polymers for improved NIR-II fluorescence imaging and photothermal therapy[J]. Chemical Engineering Journal, 428, 132098(2022).
[42] Yuan Y, Hou W Y, Sun Z Z et al. Measuring cellular uptake of polymer dots for quantitative imaging and photodynamic therapy[J]. Analytical Chemistry, 93, 7071-7078(2021).
[43] Zhou W, He X W, Wang J H et al. Semiconducting polymer nanoparticles for photoactivatable cancer immunotherapy and imaging of immunoactivation[J]. Biomacromolecules, 23, 1490-1504(2022).
[44] Huang T Y, Jiang W, Duan L. Recent progress in solution processable TADF materials for organic light-emitting diodes[J]. Journal of Materials Chemistry C, 6, 5577-5596(2018).
[45] Chen X K, Kim D, Brédas J L. Thermally activated delayed fluorescence (TADF) path toward efficient electroluminescence in purely organic materials: molecular level insight[J]. Accounts of Chemical Research, 51, 2215-2224(2018).
[46] Teng J M, Wang Y F, Chen C F. Recent progress of narrowband TADF emitters and their applications in OLEDs[J]. Journal of Materials Chemistry C, 8, 11340-11353(2020).
[47] Bryden M A, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis[J]. Chemical Society Reviews, 50, 7587-7680(2021).
[48] Wu C F, Peng H S, Jiang Y F et al. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles[J]. The Journal of Physical Chemistry B, 110, 14148-14154(2006).
[49] Lü J X, Wang C F, Zhang X J. Rational construction of a mitochondria-targeted reversible fluorescent probe with intramolecular FRET for ratiometric monitoring sulfur dioxide and formaldehyde[J]. Biosensors, 12, 715(2022).
[50] Jiang Y Y, Huang J G, Zhen X et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging[J]. Nature Communications, 10, 1-10(2019).
[51] Wang Y J, Shi L N, Ye Z F et al. Reactive oxygen correlated chemiluminescent imaging of a semiconducting polymer nanoplatform for monitoring chemodynamic therapy[J]. Nano Letters, 20, 176-183(2020).
[52] Su Y C, Walker J R, Park Y et al. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals[J]. Nature Methods, 17, 852-860(2020).
[53] Richter M M. Electrochemiluminescence (ECL)[J]. ChemInform, 35, 34291(2004).
[54] Miao Q Q, Xie C, Zhen X et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles[J]. Nature Biotechnology, 35, 1102-1110(2017).
[55] Xie C, Zhen X, Miao Q Q et al. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors[J]. Advanced Materials, 30, 1801331(2018).
[56] Li M D, Huang X Y, Ren J C. Multicolor chemiluminescent resonance energy-transfer system for in vivo high-contrast and targeted imaging[J]. Analytical Chemistry, 93, 3042-3051(2021).
[57] Zhen X, Zhang C W, Xie C et al. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species[J]. ACS Nano, 10, 6400-6409(2016).
[58] Cui D, Li J C, Zhao X H et al. Semiconducting polymer nanoreporters for near-infrared chemiluminescence imaging of immunoactivation[J]. Advanced Materials, 32, 1906314(2020).
[59] Yan Y C, Shi P F, Song W L et al. Chemiluminescence and bioluminescence imaging for biosensing and therapy: in vitro and in vivo perspectives[J]. Theranostics, 9, 4047-4065(2019).
[60] He Y, Hu X X, Gong Z J et al. A novel electrochemiluminescence biosensor based on the self-ECL emission of conjugated polymer dots for lead ion detection[J]. Microchimica Acta, 187, 237(2020).
[61] Sun F, Wang Z Y, Feng Y Q et al. Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing[J]. Biosensors and Bioelectronics, 100, 28-34(2018).
[62] Pecher J, Mecking S. Nanoparticles of conjugated polymers[J]. Chemical Reviews, 110, 6260-6279(2010).
[63] Gharieh A, Khoee S, Mahdavian A R. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics[J]. Advances in Colloid and Interface Science, 269, 152-186(2019).
[64] He Y Z, Fan X Y, Sun J et al. Flash nanoprecipitation of ultra-small semiconducting polymer dots with size tunability[J]. Chemical Communications, 56, 2594-2597(2020).
[65] Kietzke T, Neher D, Landfester K et al. Novel approaches to polymer blends based on polymer nanoparticles[J]. Nature Materials, 2, 408-412(2003).
[66] Li K, Liu B. Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging[J]. Journal of Materials Chemistry, 22, 1257-1264(2012).
[67] Wu C F, Jin Y H, Schneider T et al. Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry[J]. Angewandte Chemie, 122, 9626-9630(2010).
[68] Verma M, Chan Y H, Saha S et al. Recent developments in semiconducting polymer dots for analytical detection and NIR-II fluorescence imaging[J]. ACS Applied Bio Materials, 4, 2142-2159(2021).
[69] Wu C F, Schneider T, Zeigler M et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting[J]. Journal of the American Chemical Society, 132, 15410-15417(2010).
[70] Wu C F, Hansen S J, Hou Q et al. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting[J]. Angewandte Chemie International Edition, 50, 3430-3434(2011).
[71] Wu C F, Szymanski C, McNeill J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles[J]. Langmuir, 22, 2956-2960(2006).
[72] Eggeling C, Widengren J, Rigler R et al. Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis[J]. Analytical Chemistry, 70, 2651-2659(1998).
[73] Fernando L P, Kandel P K, Yu J B et al. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles[J]. Biomacromolecules, 11, 2675-2682(2010).
[74] Li K, Pan J, Feng S S et al. Generic strategy of preparing fluorescent conjugated-polymer-loaded poly(DL-lactide-co-glycolide) nanoparticles for targeted cell imaging[J]. Advanced Functional Materials, 19, 3535-3542(2009).
[75] Ow H, Larson D R, Srivastava M et al. Bright and stable core-shell fluorescent silica nanoparticles[J]. Nano Letters, 5, 113-117(2005).
[76] Wang L, Yang C Y, Tan W H. Dual-luminophore-doped silica nanoparticles for multiplexed signaling[J]. Nano Letters, 5, 37-43(2005).
[77] Li K, Liu Y T, Pu K Y et al. Polyhedral oligomeric silsesquioxanes-containing conjugated polymer loaded PLGA nanoparticles with trastuzumab (herceptin) functionalization for HER2-positive cancer cell detection[J]. Advanced Functional Materials, 21, 287-294(2011).
[78] Howes P, Green M, Bowers A et al. Magnetic conjugated polymer nanoparticles as bimodal imaging agents[J]. Journal of the American Chemical Society, 132, 9833-9842(2010).
[79] Howes P, Green M, Levitt J et al. Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment[J]. Journal of the American Chemical Society, 132, 3989-3996(2010).
[80] Zhang X J, Yu J B, Wu C F et al. Importance of having low-density functional groups for generating high-performance semiconducting polymer dots[J]. ACS Nano, 6, 5429-5439(2012).
[81] Yu J B, Wu C F, Zhang X J et al. Stable functionalization of small semiconducting polymer dots via covalent cross-linking and their application for specific cellular imaging[J]. Advanced Materials, 24, 3498-3504(2012).
[82] Chen H B, Zhou H, Men X J et al. Light-induced PEGylation and functionalization of semiconductor polymer dots[J]. ChemNanoMat, 3, 755-759(2017).
[83] Yang L F, Canaveras J C G, Chen Z H et al. Serine catabolism feeds NADH when respiration is impaired[J]. Cell Metabolism, 31, 809-821(2020).
[84] Covarrubias A J, Perrone R, Grozio A et al. NAD+ metabolism and its roles in cellular processes during ageing[J]. Nature Reviews Molecular Cell Biology, 22, 119-141(2021).
[85] Luongo T S, Eller J M, Lu M J et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter[J]. Nature, 588, 174-179(2020).
[86] Zaremba M, Dakineviciene D, Golovinas E et al. Short prokaryotic Argonautes provide defence against incoming mobile genetic elements through NAD+ depletion[J]. Nature Microbiology, 7, 1857-1869(2022).
[87] Chen H B, Yu J B, Men X X et al. Reversible ratiometric NADH sensing using semiconducting polymer dots[J]. Angewandte Chemie International Edition, 60, 12007-12012(2021).
[88] Chen H B, Yu J B, Zhang J C et al. Monitoring metabolites using an NAD(P)H-sensitive polymer dot and a metabolite-specific enzyme[J]. Angewandte Chemie, 60, 19331-19336(2021).
[89] Sun K, Tang Y, Li Q et al. In vivo dynamic monitoring of small molecules with implantable polymer-dot transducer[J]. ACS Nano, 10, 6769-6781(2016).
[90] Sun K, Yang Y K, Zhou H et al. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone[J]. ACS Nano, 12, 5176-5184(2018).
[91] Sun K, Ding Z Y, Zhang J C et al. Enhancing the long-term stability of a polymer dot glucose transducer by using an enzymatic cascade reaction system[J]. Advanced Healthcare Materials, 10, 2001019(2021).
[92] Sun K, Liu S Y, Liu J et al. Improving the accuracy of Pdot-based continuous glucose monitoring by using external ratiometric calibration[J]. Analytical Chemistry, 93, 2359-2366(2021).
[93] Liu J, Fang X F, Zhang Z et al. Long-term in vivo glucose monitoring by polymer-dot transducer in an injectable hydrogel implant[J]. Analytical Chemistry, 94, 2195-2203(2022).
[94] He S J, Song B, Li D et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Advanced Functional Materials, 20, 453-459(2010).
[95] Ren X S, Xu Q H. Label-free DNA sequence detection with enhanced sensitivity and selectivity using cationic conjugated polymers and PicoGreen[J]. Langmuir, 25, 43-47(2009).
[96] Bao B Q, Ma M F, Zai H F et al. Conjugated polymer nanoparticles for label-free and bioconjugate-recognized DNA sensing in serum[J]. Advanced Science, 2, 1400009(2015).
[97] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 116, 281-297(2004).
[98] Luo J H, Li Q, Chen S H et al. Coreactant-free dual amplified electrochemiluminescent biosensor based on conjugated polymer dots for the ultrasensitive detection of microRNA[J]. ACS Applied Materials & Interfaces, 11, 27363-27370(2019).
[99] Liu D, Zhang X L, Zhao J W et al. An ultrasensitive sensing platform for microRNA-155 based on H2O2 quenched hydroxide-dependent ECL emission of PFO Pdots[J]. Biosensors and Bioelectronics, 150, 111872(2020).
[100] Zhang N, Gao H, Jia Y L et al. Ultrasensitive nucleic acid assay based on AIE-active polymer dots with excellent electrochemiluminescence stability[J]. Analytical Chemistry, 93, 6857-6864(2021).
[101] Fang C C, Chou C C, Yang Y Q et al. Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip[J]. Analytical Chemistry, 90, 2134-2140(2018).
[102] Yang Y Q, Yang Y C, Liu M H et al. FRET-created traffic light immunoassay based on polymer dots for PSA detection[J]. Analytical Chemistry, 92, 1493-1501(2020).
[103] You P Y, Li F C, Liu M H et al. Colorimetric and fluorescent dual-mode immunoassay based on plasmon-enhanced fluorescence of polymer dots for detection of PSA in whole blood[J]. ACS Applied Materials & Interfaces, 11, 9841-9849(2019).
[104] Yang Y C, Liu M H, Yang S M et al. Bimodal multiplexed detection of tumor markers in non-small cell lung cancer with polymer dot-based immunoassay[J]. ACS Sensors, 6, 4255-4264(2021).
[105] Yang W Q, Zhang G Y, Weng W et al. Signal on fluorescence biosensor for MMP-2 based on FRET between semiconducting polymer dots and a metal organic framework[J]. RSC Advances, 4, 58852-58857(2014).
[106] Sun J Y, Mei H, Wang S F et al. Two-photon semiconducting polymer dots with dual-emission for ratiometric fluorescent sensing and bioimaging of tyrosinase activity[J]. Analytical Chemistry, 88, 7372-7377(2016).
[107] Tian Z Y, Yu J B, Wu C F et al. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors[J]. Nanoscale, 2, 1999-2011(2010).
[108] Yu J B, Rong Y, Kuo C T et al. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine[J]. Analytical Chemistry, 89, 42-56(2017).
[109] Stevens A L, Kaeser A, Schenning A P H J et al. Morphology-dependent energy transfer dynamics in fluorene-based amphiphile nanoparticles[J]. ACS Nano, 6, 4777-4787(2012).
[110] Jiang Y Y, Pu K Y. Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents[J]. Advanced Biosystems, 2, 1700262(2018).
[111] Hong G S, Antaris A L, Dai H J. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 1, 1-22(2017).
[112] Zhang R R, Schroeder A B, Grudzinski J J et al. Beyond the margins: real-time detection of cancer using targeted fluorophores[J]. Nature Reviews Clinical Oncology, 14, 347-364(2017).
[113] Desmettre T, Devoisselle J M, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography[J]. Survey of Ophthalmology, 45, 15-27(2000).
[114] Levitus M, Ranjit S. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments[J]. Quarterly Reviews of Biophysics, 44, 123-151(2011).
[115] Altinoğlu E I, Russin T J, Kaiser J M et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer[J]. ACS Nano, 2, 2075-2084(2008).
[116] Xiong L Q, Shuhendler A J, Rao J H. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging[J]. Nature Communications, 3, 1-9(2012).
[117] Men X J, Geng X R, Zhang Z et al. Biomimetic semiconducting polymer dots for highly specific NIR-II fluorescence imaging of glioma[J]. Materials Today Bio, 16, 100383(2022).
[118] Liu Y, Liu J F, Chen D D et al. Fluorination enhances NIR-II fluorescence of polymer dots for quantitative brain tumor imaging[J]. Angewandte Chemie International Edition, 59, 21049-21057(2020).
[119] Zhang Z, Yuan Y, Liu Z H et al. Brightness enhancement of near-infrared semiconducting polymer dots for in vivo whole-body cell tracking in deep organs[J]. ACS Applied Materials & Interfaces, 10, 26928-26935(2018).
[120] Xiong L Q, Guo Y X, Zhang Y M et al. Highly luminescent and photostable near-infrared fluorescent polymer dots for long-term tumor cell tracking in vivo[J]. Journal of Materials Chemistry B, 4, 202-206(2016).
[121] Feng G X, Liu J, Liu R R et al. Ultrasmall conjugated polymer nanoparticles with high specificity for targeted cancer cell imaging[J]. Advanced Science, 4, 1600407(2017).
[122] Liu Y, Liu J F, Chen D D et al. Quinoxaline-based semiconducting polymer dots for in vivo NIR-II fluorescence imaging[J]. Macromolecules, 52, 5735-5740(2019).
[123] Mayder D M, Christopherson C J, Primrose W L et al. Polymer dots and glassy organic dots using dibenzodipyridophenazine dyes as water-dispersible TADF probes for cellular imaging[J]. Journal of Materials Chemistry B, 10, 6496-6506(2022).
[124] Paisley N R, Halldorson S V, Tran M V et al. Near-infrared-emitting boron-difluoride-curcuminoid-based polymers exhibiting thermally activated delayed fluorescence as biological imaging probes[J]. Angewandte Chemie, 60, 18630-18638(2021).
[125] Hsu K F, Su S P, Lu H F et al. TADF-based NIR-II semiconducting polymer dots for in vivo 3D bone imaging[J]. Chemical Science, 13, 10074-10081(2022).
[126] Kim H M, Cho B R. Small-molecule two-photon probes for bioimaging applications[J]. Chemical Reviews, 115, 5014-5055(2015).
[127] Miao Q Q, Pu K Y. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics[J]. Advanced Materials, 30, 1801778(2018).
[128] Li J C, Rao J H, Pu K Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy[J]. Biomaterials, 155, 217-235(2018).
[129] Pu K Y, Shuhendler A J, Jokerst J V et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice[J]. Nature Nanotechnology, 9, 233-239(2014).
[130] Chen H B, Yuan Z, Wu C F. Nanoparticle probes for structural and functional photoacoustic molecular tomography[J]. BioMed Research International, 2015, 757101(2015).
[131] Zhen X, Pu K Y, Jiang X Q. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near-infrared construction[J]. Small, 17, 2004723(2021).
[132] Chen H B, Zhang J, Chang K W et al. Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy[J]. Biomaterials, 144, 42-52(2017).
[133] Guo B, Sheng Z H, Hu D H et al. Molecular engineering of conjugated polymers for biocompatible organic nanoparticles with highly efficient photoacoustic and photothermal performance in cancer theranostics[J]. ACS Nano, 11, 10124-10134(2017).
[134] Lü Y, Fang Y, Miao Q Q et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy[J]. ACS Nano, 10, 4472-4481(2016).
[135] Zhen X, Feng X H, Xie C et al. Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging[J]. Biomaterials, 127, 97-106(2017).
[136] Duan Y K, Xu Y, Mao D et al. Photoacoustic and magnetic resonance imaging bimodal contrast agent displaying amplified photoacoustic signal[J]. Small, 14, 1800652(2018).
[137] Jiang Y Y, Upputuri P K, Xie C et al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window[J]. Nano Letters, 17, 4964-4969(2017).
[138] Wu J, You L Y, Lan L et al. Semiconducting polymer nanoparticles for centimeters-deep photoacoustic imaging in the second near-infrared window[J]. Advanced Materials, 29, 1703403(2017).
[139] Guo B, Sheng Z H, Kenry et al. Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window[J]. Materials Horizons, 4, 1151-1156(2017).
[140] Guo B, Chen J Q, Chen N B et al. High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent[J]. Advanced Materials, 31, 1808355(2019).
[141] Jiang Y Y, Upputuri P K, Xie C et al. Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging[J]. Advanced Materials, 31, 1808166(2019).
[142] Men X J, Yuan Z. Multifunctional conjugated polymer nanoparticles for photoacoustic-based multimodal imaging and cancer photothermal therapy[J]. Journal of Innovative Optical Health Sciences, 12, 1930001(2019).
[143] Yu N Y, Zhao L Z, Cheng D L et al. Radioactive organic semiconducting polymer nanoparticles for multimodal cancer theranostics[J]. Journal of Colloid and Interface Science, 619, 219-228(2022).
[144] Xie C, Zhou W, Zeng Z L et al. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy[J]. Chemical Science, 11, 10553-10570(2020).
[145] Jiang Y Y, Pu K Y. Multimodal biophotonics of semiconducting polymer nanoparticles[J]. Accounts of Chemical Research, 51, 1840-1849(2018).
[146] Lü Y, Zhen X, Miao Y S et al. Reaction-based semiconducting polymer nanoprobes for photoacoustic imaging of protein sulfenic acids[J]. ACS Nano, 11, 358-367(2017).
[147] Hashim Z, Green M, Chung P H et al. Gd-containing conjugated polymer nanoparticles: bimodal nanoparticles for fluorescence and MRI imaging[J]. Nanoscale, 6, 8376-8386(2014).
[148] Sun W, Hayden S, Jin Y H et al. A versatile method for generating semiconducting polymer dot nanocomposites[J]. Nanoscale, 4, 7246-7249(2012).
[149] Duan Y K, Wu M, Hu D H et al. Biomimetic nanocomposites cloaked with bioorthogonally labeled glioblastoma cell membrane for targeted multimodal imaging of brain tumors[J]. Advanced Functional Materials, 30, 2004346(2020).
[150] Batrakova E V, Gendelman H E, Kabanov A V. Cell-mediated drug delivery[J]. Expert Opinion on Drug Delivery, 8, 415-433(2011).
[151] Quail D F, Joyce J A. The microenvironmental landscape of brain tumors[J]. Cancer Cell, 31, 326-341(2017).
[152] Tian Q W, Hu J Q, Zhu Y H et al. Sub-10 nm Fe3O4@Cu2–xS core-shell nanoparticles for dual-modal imaging and photothermal therapy[J]. Journal of the American Chemical Society, 135, 8571-8577(2013).
[153] Hu X M, Tang Y F, Hu Y X et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy[J]. Theranostics, 9, 4168-4181(2019).
[154] Huang X H, El-Sayed I H, Qian W et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 128, 2115-2120(2006).
[155] Wei Z W, Xin F L, Zhang J et al. Donor-acceptor conjugated polymer-based nanoparticles for highly effective photoacoustic imaging and photothermal therapy in the NIR-II window[J]. Chemical Communications, 56, 1093-1096(2020).
[156] Song X J, Liang C, Gong H et al. Photosensitizer-conjugated albumin-polypyrrole nanoparticles for imaging-guided in vivo photodynamic/photothermal therapy[J]. Small, 11, 3932-3941(2015).
[157] Kim S, Tachikawa T, Fujitsuka M et al. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy[J]. Journal of the American Chemical Society, 136, 11707-11715(2014).
[158] Skovsen E, Snyder J W, Lambert J D C et al. Lifetime and diffusion of singlet oxygen in a cell[J]. The Journal of Physical Chemistry B, 109, 8570-8573(2005).
[159] Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age[J]. Nature, 480, 480-489(2011).
[160] Rosenberg S A, Yang J C, Restifo N P. Cancer immunotherapy: moving beyond current vaccines[J]. Nature Medicine, 10, 909-915(2004).
[161] Li J C, Pu K Y. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation[J]. Chemical Society Reviews, 48, 38-71(2019).
[162] Zhang C, Pu K Y. Molecular and nanoengineering approaches towards activatable cancer immunotherapy[J]. Chemical Society Reviews, 49, 4234-4253(2020).
[163] Dolmans D E J G J, Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 3, 380-387(2003).
[164] Yang T, Liu L, Deng Y B et al. Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition[J]. Advanced Materials, 29, 1700487(2017).
[165] Hong G S, Diao S, Chang J L et al. Through-skull fluorescence imaging of the brain in a new near-infrared window[J]. Nature Photonics, 8, 723-730(2014).
[166] Robinson J T, Hong G S, Liang Y Y et al. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake[J]. Journal of the American Chemical Society, 134, 10664-10669(2012).
[167] Jiang Y Y, Li J C, Zhen X et al. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study[J]. Advanced Materials, 30, 1705980(2018).
[168] Li X Z, Liu L, Li S L et al. Biodegradable π-conjugated oligomer nanoparticles with high photothermal conversion efficiency for cancer theranostics[J]. ACS Nano, 13, 12901-12911(2019).
[169] Lü Y, Zeng J F, Jiang Y Y et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy[J]. ACS Nano, 12, 1801-1810(2018).
[170] Yang Y Q, Fan X X, Li L et al. Semiconducting polymer nanoparticles as theranostic system for near-infrared-II fluorescence imaging and photothermal therapy under safe laser fluence[J]. ACS Nano, 14, 2509-2521(2020).
[171] Zhang W S, Deng W X, Zhang H et al. Bioorthogonal-targeted 1064 nm excitation theranostic nanoplatform for precise NIR-IIa fluorescence imaging guided efficient NIR-II photothermal therapy[J]. Biomaterials, 243, 119934(2020).
[172] Zhang J F, Chen J, Ren J K et al. Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency[J]. Biomaterials, 181, 92-102(2018).
[173] Bao B Q, Tong L, Xu Y et al. Mussel-inspired functionalization of semiconducting polymer nanoparticles for amplified photoacoustic imaging and photothermal therapy[J]. Nanoscale, 11, 14727-14733(2019).
[174] Guo B, Sheng Z H, Hu D H et al. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance[J]. Advanced Materials, 30, 1802591(2018).
[175] Hu X M, Lu F, Chen L et al. Perylene diimide-grafted polymeric nanoparticles chelated with Gd3+ for photoacoustic/T1-weighted magnetic resonance imaging-guided photothermal therapy[J]. ACS Applied Materials & Interfaces, 9, 30458-30469(2017).
[176] Abrahamse H, Hamblin M R. New photosensitizers for photodynamic therapy[J]. The Biochemical Journal, 473, 347-364(2016).
[177] Mitra K, Shettar A, Kondaiah P et al. Biotinylated platinum(II) ferrocenylterpyridine complexes for targeted photoinduced cytotoxicity[J]. Inorganic Chemistry, 55, 5612-5622(2016).
[178] Zhao J Z, Wu W H, Sun J F et al. Triplet photosensitizers: from molecular design to applications[J]. Chemical Society Reviews, 42, 5323-5351(2013).
[179] Zeng L L, Gupta P, Chen Y L et al. The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials[J]. Chemical Society Reviews, 46, 5771-5804(2017).
[180] Shi H F, Ma X, Zhao Q et al. Ultrasmall phosphorescent polymer dots for ratiometric oxygen sensing and photodynamic cancer therapy[J]. Advanced Functional Materials, 24, 4823-4830(2014).
[181] Haupt S, Lazar I, Weitman H et al. Pdots, a new type of nanoparticle, bind to mTHPC via their lipid modified surface and exhibit very high FRET efficiency between the core and the sensitizer[J]. Physical Chemistry Chemical Physics: PCCP, 17, 11412-11422(2015).
[182] Tang Y, Chen H B, Chang K W et al. Photo-cross-linkable polymer dots with stable sensitizer loading and amplified singlet oxygen generation for photodynamic therapy[J]. ACS Applied Materials & Interfaces, 9, 3419-3431(2017).
[183] Xu C, Pu K Y. Second near-infrared photothermal materials for combinational nanotheranostics[J]. Chemical Society Reviews, 50, 1111-1137(2021).
[184] Huang H C, Pigula M, Fang Y Y et al. Immobilization of photo-immunoconjugates on nanoparticles leads to enhanced light-activated biological effects[J]. Small, 14, 1800236(2018).
[185] Cheng H W, Fan X S, Ye E Y et al. Dual tumor microenvironment remodeling by glucose-contained radical copolymer for MRI-guided photoimmunotherapy[J]. Advanced Materials, 34, 2107674(2022).
[186] Li J C, Yu X R, Jiang Y Y et al. Second near-infrared photothermal semiconducting polymer nanoadjuvant for enhanced cancer immunotherapy[J]. Advanced Materials, 33, 2003458(2021).
[187] Jiang Y Y, Huang J G, Xu C et al. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer[J]. Nature Communications, 12, 1-14(2021).
[188] Xu C, Jiang Y Y, Huang J S et al. Second near-infrared light-activatable polymeric nanoantagonist for photothermal immunometabolic cancer therapy[J]. Advanced Materials, 33, 2101410(2021).
[189] Koelwyn G J, Zhuang X Q, Tammela T et al. Exercise and immunometabolic regulation in cancer[J]. Nature Metabolism, 2, 849-857(2020).
[190] McKinney E F, Smith K G C. Metabolic exhaustion in infection, cancer and autoimmunity[J]. Nature Immunology, 19, 213-221(2018).
[191] Liu Y J, Lu Y, Zhu X H et al. Tumor microenvironment-responsive prodrug nanoplatform via co-self-assembly of photothermal agent and IDO inhibitor for enhanced tumor penetration and cancer immunotherapy[J]. Biomaterials, 242, 119933(2020).
[192] Wang M, Song J, Zhou F F et al. NIR-triggered phototherapy and immunotherapy via an antigen-capturing nanoplatform for metastatic cancer treatment[J]. Advanced Science, 6, 1802157(2019).
[193] Zeng Z L, Zhang C, Li J C et al. Activatable polymer nanoenzymes for photodynamic immunometabolic cancer therapy[J]. Advanced Materials, 33, 2007247(2021).
Get Citation
Copy Citation Text
Sile Deng, Haobin Chen. Organic Polymer Dots and Their Bio‐Optical Applications[J]. Chinese Journal of Lasers, 2023, 50(15): 1507401
Category: Bio-Optical Sensing and Manipulation
Received: Feb. 21, 2023
Accepted: Mar. 30, 2023
Published Online: Aug. 8, 2023
The Author Email: Chen Haobin (chenhb@csu.edu.cn)