Chinese Journal of Lasers, Volume. 51, Issue 3, 0307301(2024)

Recent Advancements in Biomedical Research on Fluorescent Carbon Quantum Dots

Lijuan Yang, Fan Dai, Shilong Shao, Dazhuang Xu**, and Gang Liu*
Author Affiliations
  • Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361104, Fujian , China
  • show less
    References(50)

    [1] Wang B Y, Lu S Y. The light of carbon dots: from mechanism to applications[J]. Matter, 5, 110-149(2022).

    [2] Rui S Q, Song L M, Lan J R et al. Recent advances in carbon dots-based nanoplatforms: physicochemical properties and biomedical applications[J]. Chemical Engineering Journal, 476, 146593(2023).

    [3] Shi H X, Wu Y, Xu J H et al. Recent advances of carbon dots with afterglow emission[J]. Small, 19, e2207104(2023).

    [4] Li R Y, Liang F Y, Hu X Y et al. A versatile cellulose nanocrystal-carbon dots architecture: preparation and environmental/biological applications[J]. Carbohydrate Polymers, 298, 120073(2022).

    [5] Xu X Y, Ray R, Gu Y L et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 126, 12736-12737(2004).

    [6] Cao L, Wang X, Meziani M J et al. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society, 129, 11318-11319(2007).

    [7] Chatzimitakos T G, Kasouni A I, Stalikas C D. Multi-purpose nitrogen and phosphorous codoped carbon nanodots for fluorescence-based sensing and bioimaging[J]. Chemical Engineering Journal, 476, 146686(2023).

    [8] Chu D C, Qu H, Huang X P et al. Manganese amplifies photoinduced ROS in toluidine blue carbon dots to boost MRI guided chemo/photodynamic therapy[J]. Small, e2304968(2023).

    [9] Yadav S, Choudhary N, Sonpal V et al. Engineering excitation-independent turn-on fluorescent probe for mercury: Functionalized dendritic silica doped with red-emissive carbon dots towards simultaneous detection and remediation with biosensing application[J]. Chemical Engineering Journal, 471, 144715(2023).

    [10] Warjurkar K, Panda S, Sharma V. Red emissive carbon dots: a promising next-generation material with intracellular applicability[J]. Journal of Materials Chemistry B, 11, 8848-8865(2023).

    [11] Truskewycz A, Yin H, Halberg N et al. Carbon dot therapeutic platforms: administration, distribution, metabolism, excretion, toxicity, and therapeutic potential[J]. Small, 18, e2106342(2022).

    [12] Khan W U, Qin L Y, Zhou P et al. Zero thermal quenching phenomenon of green emitting carbon dots with high biocompatibility and stable multicolor biological imaging in a hot environment[J]. ACS Applied Materials & Interfaces, 15, 45616-45625(2023).

    [13] Nangan S, Kanagaraj K, Kaarthikeyan G et al. Sustainable preparation of luminescent carbon dots from syringe waste and hyaluronic acid for cellular imaging and antimicrobial applications[J]. Environmental Research, 237, 116990(2023).

    [14] Domena J B, Ferreira B C L B, Cilingir E K et al. Advancing glioblastoma imaging: exploring the potential of organic fluorophore-based red emissive carbon dots[J]. Journal of Colloid and Interface Science, 650, 1619-1637(2023).

    [15] Li H, Guo J Q, Liu A K et al. Long-wavelength excitation of carbon dots with dual-organelle targeting capability for live-cell imaging via STED nanoscopy[J]. Dyes and Pigments, 216, 111383(2023).

    [16] Xin N N, Gao D, Su B R et al. Orange-emissive carbon dots with high photostability for mitochondrial dynamics tracking in living cells[J]. ACS Sensors, 8, 1161-1172(2023).

    [17] Zhan L, Hou P, Chen N et al. Amino-terminated carbon dots for imaging Golgi apparatus polarity in live cells[J]. Chemical Engineering Journal, 475, 145613(2023).

    [18] Guo J H, Fan L, Zan Q et al. Rational design of orange-red emissive carbon dots for tracing lysosomal viscosity dynamics in living cells and zebrafish[J]. Analytical Chemistry, 95, 12139-12151(2023).

    [19] Zong M R, Zhang Z Y, Ning X et al. Synthesis of multicolor luminescent carbon dots based on carboxymethyl chitosan for cell imaging and wound healing application: in vitro and in vivo studies[J]. International Journal of Biological Macromolecules, 253, 127405(2023).

    [20] Ji Z, Ai P H, Shao C et al. Manganese-doped carbon dots for magnetic resonance/optical dual-modal imaging of tiny brain glioma[J]. ACS Biomaterials Science & Engineering, 4, 2089-2094(2018).

    [21] Liu J, Kong T Y, Xiong H M. Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk[J]. Advanced Materials, 34, e2200152(2022).

    [22] Karagianni A, Tsierkezos N G, Prato M et al. Application of carbon-based quantum dots in photodynamic therapy[J]. Carbon, 203, 273-310(2023).

    [23] Wang J Y, Fu Y, Gu Z H et al. Multifunctional carbon dots for biomedical applications: diagnosis, therapy, and theranostic[J]. Small, e2303773(2023).

    [24] Yang Z, Li H, Xu T T et al. Red emissive carbon dots as a fluorescent sensor for fast specific monitoring and imaging of polarity in living cells[J]. Journal of Materials Chemistry A, 11, 2679-2689(2023).

    [25] Meng Y T, Guo Q Z, Xu H M et al. Strategy to synthesize long-wavelength emission carbon dots and their multifunctional application for pH variation and arginine sensing and bioimaging[J]. Talanta, 254, 124180(2023).

    [26] Li J P, Yang S W, Liu Z Y et al. Imaging cellular aerobic glycolysis using carbon dots for early warning of tumorigenesis[J]. Advanced Materials, 33, e2005096(2021).

    [27] Tang X D, Zhao Y C, Yu H M et al. Concentration-regulated multi-color fluorescent carbon dots for the detection of rifampicin, morin and Al3+[J]. Materials Today Advances, 18, 100383(2023).

    [28] Gao J R, Wu X L, Jiang X et al. Achieving purple light excitable high-efficiency temperature-responsive dual- and single-mode afterglow in carbon dots[J]. Carbon, 208, 365-373(2023).

    [29] Bu Y W, Wang K, Yang X Y et al. Sensitive dual-mode sensing platform for Amyloid β detection: combining dual Z-scheme heterojunction enhanced photoelectrochemistry analysis and dual-wavelength ratiometric electrochemiluminescence strategy[J]. Biosensors and Bioelectronics, 237, 115507(2023).

    [30] Luo T Y, Yang H, Wang R H et al. Bifunctional cascading nanozymes based on carbon dots promotes photodynamic therapy by regulating hypoxia and glycolysis[J]. ACS Nano, 17, 16715-16730(2023).

    [31] Zhu J T, Chu H Y, Shen J W et al. Nitrogen and fluorine co-doped green fluorescence carbon dots as a label-free probe for determination of cytochrome C in serum and temperature sensing[J]. Journal of Colloid and Interface Science, 586, 683-691(2021).

    [32] Wei S S, Zhang H Y, Wang C Z et al. Portable smartphone platform based on a ratio fluorescence probe for situ visual monition of cardiac disease markers in vitro[J]. Chemical Engineering Journal, 474, 145614(2023).

    [33] He C, Xu P, Zhang X H et al. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: current state and future perspective[J]. Carbon, 186, 91-127(2022).

    [34] Zhao Q F, Zhang Y R, Yu T et al. Tailored nanoplatforms with detachable ‘meteorolite’ for photothermal-enhanced programmed tumor therapy[J]. Carbon, 199, 119-131(2022).

    [35] Yu L D, Wang Y, Li K et al. Metformin-based carbon dots based on biguanide functional groups for simultaneous chelation of copper ions and inhibitable colorectal cancer therapy[J]. Carbon, 212, 118095(2023).

    [36] Yang S Y, Chen Z Q, Zhou P et al. Carbon dots based on endogenous nutrients with visible and NIR fluorescence to penetrate blood-brain barrier[J]. Carbon, 202, 130-140(2023).

    [37] Zhang T S, Cheng Q S, Lei J H et al. Constructing oxygen-related defects in carbon nanodots with Janus optical properties: noninvasive NIR fluorescent imaging and effective photocatalytic therapy[J]. Advanced Materials, 35, e2302705(2023).

    [38] Yu M Z, Guo X Z, Lu H J et al. Carbon dots derived from folic acid as an ultra-succinct smart antimicrobial nanosystem for selective killing of S. aureus and biofilm eradication[J]. Carbon, 199, 395-406(2022).

    [39] Li J T, Fu W J, Zhang X Y et al. Green preparation of ginger-derived carbon dots accelerates wound healing[J]. Carbon, 208, 208-215(2023).

    [40] Mintz K J, Leblanc R M. The use of nanotechnology to combat liver cancer: progress and perspectives[J]. Biochimica et Biophysica Acta. Reviews on Cancer, 1876, 188621(2021).

    [41] Chu X, Duan M D, Hou H Y et al. Recent strategies of carbon dot-based nanodrugs for enhanced emerging antitumor modalities[J]. Journal of Materials Chemistry B, 11, 9128-9154(2023).

    [42] Deng K, Zhang L L, Gao W et al. A functional carbon dots induce ferroptosis by suppressing PLPP4 activity to inhibit glioblastoma growth[J]. Chemical Engineering Journal, 475, 146473(2023).

    [43] Han Y, Ge K, Zhao Y et al. Modulating the coordination environment of carbon-dot-supported Fe single-atom nanozymes for enhanced tumor therapy[J]. Small, e2306656(2023).

    [44] Fang M, Lin L P, Zheng M Y et al. Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation[J]. Journal of Materials Chemistry B, 11, 9386-9403(2023).

    [45] Zhang X T, Wu P P, Hao X L et al. Quaternized carbon dots with enhanced antimicrobial ability towards Gram-negative bacteria for the treatment of acute peritonitis caused by E. coli[J]. Journal of Materials Chemistry B, 11, 7696-7706(2023).

    [46] Gao F C, Liu J M, Gong P Y et al. Carbon dots as potential antioxidants for the scavenging of multi-reactive oxygen and nitrogen species[J]. Chemical Engineering Journal, 462, 142338(2023).

    [47] Chen Q, Wu C Y, Wang S W et al. Glycyrrhizic acid modified Poria cocos polyscaccharide carbon dots dissolving microneedles for methotrexate delivery to treat rheumatoid arthritis[J]. Frontiers in Chemistry, 11, 1181159(2023).

    [48] Deng W W, Zang C R, Li Q C et al. Hydrothermally derived green carbon dots from broccoli water extracts: decreased toxicity, enhanced free-radical scavenging, and anti-inflammatory performance[J]. ACS Biomaterials Science & Engineering, 9, 1307-1319(2023).

    [49] Zhang Y, Wang R N, Fan H Y et al. Carbon dots from camelina decorating hFGF2-linked camelina lipid droplets cooperate to accelerate wound healing[J]. ACS Applied Materials & Interfaces, 15, 34451-34461(2023).

    [50] Wu L N, Yang Y J, Huang L X et al. Levofloxacin-based carbon dots to enhance antibacterial activities and combat antibiotic resistance[J]. Carbon, 186, 452-464(2022).

    Tools

    Get Citation

    Copy Citation Text

    Lijuan Yang, Fan Dai, Shilong Shao, Dazhuang Xu, Gang Liu. Recent Advancements in Biomedical Research on Fluorescent Carbon Quantum Dots[J]. Chinese Journal of Lasers, 2024, 51(3): 0307301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Neurophotonics and Optical Regulation

    Received: Oct. 27, 2023

    Accepted: Dec. 11, 2023

    Published Online: Jan. 26, 2024

    The Author Email: Xu Dazhuang (dazhuangxu@xmu.edu.cn), Liu Gang (gangliu.cmitm@xmu.edu.cn)

    DOI:10.3788/CJL231334

    CSTR:32183.14.CJL231334

    Topics