Chinese Journal of Lasers, Volume. 49, Issue 18, 1810003(2022)
Identifying and Constructing Semantic Maps Based on Laser and Vision Fusions for Improving Localization Performance
[1] Cadena C, Carlone L, Carrillo H et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 32, 1309-1332(2016).
[2] Chi J N, Xu X H. Research on simultaneous localization and mapping of mobile robot[J]. Robot, 26, 92-96(2004).
[3] Jiang L, Xiang C, Zhu J Y et al. Particle filter relocation with semantic likelihood estimation[J]. Acta Electronica Sinica, 49, 306-314(2021).
[5] Zhang L, Xu X B, Cao C F et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination[J]. Chinese Journal of Lasers, 49, 0610001(2022).
[6] Jiang L, Li J, Ma X Z et al. Voronoi path planning based on improved skeleton extraction[J]. Journal of Mechanical Engineering, 56, 138-148(2020).
[7] Bai Y H. Research on semantic mapping based on SLAM algorithm and deep neural network[J]. Computer Applications and Software, 35, 183-190(2018).
[9] Newcombe R A, Izadi S, Hilliges O et al. KinectFusion: real-time dense surface mapping and tracking[C], 127-136(2011).
[10] Whelan T, Leutenegger S, Salas Moreno R et al. ElasticFusion: dense SLAM without a pose graph[C](2015).
[11] McCormac J, Handa A, Davison A et al. SemanticFusion: dense 3D semantic mapping with convolutional neural networks[C], 4628-4635(2017).
[13] Zhao L, Hu J, Liu H et al. Deep learning based on semantic segmentation for three-dimensional object detection from point clouds[J]. Chinese Journal of Lasers, 48, 1710004(2021).
[14] Zou B, Lin S Y, Yin Z S. Semantic mapping based on YOLOv3 and visual SLAM[J]. Laser & Optoelectronics Progress, 57, 201012(2020).
[15] Liu Z Y, von Wichert G. Extracting semantic indoor maps from occupancy grids[J]. Robotics and Autonomous Systems, 62, 663-674(2014).
[16] Li X Z, Li S Y, Jia S M et al. System of real time mobile robot semantic map building[J]. Chinese Journal of Scientific Instrument, 38, 2769-2778(2017).
[17] Chen X, Milioto A, Palazzolo E et al. SuMa++:efficient LiDAR-based semantic SLAM[C], 4530-4537(2019).
[18] Milioto A, Vizzo I, Behley J et al. RangeNet ++:fast and accurate LiDAR semantic segmentation[C], 4213-4220(2019).
[19] Behley J, Stachniss C. Efficient surfel-based SLAM using 3D laser range data in urban environments[C](2018).
[20] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).
[22] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[23] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[24] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
Get Citation
Copy Citation Text
Lin Jiang, Qi Liu, Bin Lei, Jianpeng Zuo, Hui Zhao. Identifying and Constructing Semantic Maps Based on Laser and Vision Fusions for Improving Localization Performance[J]. Chinese Journal of Lasers, 2022, 49(18): 1810003
Category: remote sensing and sensor
Received: Dec. 13, 2021
Accepted: Jan. 19, 2022
Published Online: Jul. 28, 2022
The Author Email: Liu Qi (liuqi_xl@163.com)