Journal of the Chinese Ceramic Society, Volume. 52, Issue 10, 3311(2024)

Progress on Thermoelectric Cooling Materials

ZHOU Min1, SU Haojian1,2, SHI Li1、*, and LI Laifeng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(110)

    [1] [1] MAO J, CHEN G, REN Z F. Thermoelectric cooling materials[J]. Nat Mater, 2021, 20: 454–461.

    [4] [4] CHEN Z, ZHOU M, HUANG R J, et al. Thermoelectric properties of p-type Pb-doped Bi85Sb15–xPbx alloys at cryogenic temperatures[J]. J Alloys Compd, 2012, 511(1): 85–89.

    [5] [5] BENTIEN A, MADSEN G K H, JOHNSEN S, et al. Experimental and theoretical investigations of strongly correlated FeSb2–xSnx[J]. Phys Rev B, 2006, 74(20): 205105.

    [6] [6] CHUNG D Y, HOGAN T, BRAZIS P, et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications[J]. Science, 2000, 287(5455): 1024–1027.

    [7] [7] HUANG B L, KAVIANY M. Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride[J].Phys Rev B, 2008, 77(12): 125209.

    [8] [8] GOLDSMID H J, DOUGLAS R W. The use of semiconductors in thermoelectric refrigeration[J]. Br J Appl Phys, 1954, 5(11): 386–390.

    [9] [9] DELVES R T, BOWLEY A E, HAZELDEN D W, et al. Anisotropy of the electrical conductivity in bismuth telluride[J]. Proc Phys Soc, 1961,78(5): 838–844.

    [10] [10] LI B B, ZHAI R S, FANG T, et al. Mid-temperature thermoelectric performance of zone-melted Sb2(Te,Se)3 alloys near phase transition boundary[J]. J Materiomics, 2019, 5(4): 590–596.

    [11] [11] LARSON P, LAMBRECHT W R L. Electronic structure and magnetism in Bi2Te3, Bi2Se3, and Sb2Te3 doped with transition metals(Ti–Zn)[J]. Phys Rev B, 2008, 78(19): 195207.

    [12] [12] WANG G, CAGIN T. Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations[J]. Phys Rev B, 2007, 76(7): 075201.

    [13] [13] DRABBLE J R, GROVES R D, WOLFE R. Galvanomagnetic effects in n-type bismuth telluride[J]. Proc Phys Soc, 1958, 71(3): 430–443.

    [14] [14] YOUN S J, FREEMAN A J. First-principles electronic structure and its relation to thermoelectric properties of Bi2Te3[J]. Phys Rev B, 2001,63(8): 085112.

    [15] [15] FANG T, LI X, HU C L, et al. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions[J]. Adv Funct Materials, 2019, 29(28): 1900677.

    [17] [17] YAVORSKY B Y, HINSCHE N F, MERTIG I, et al. Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3[J]. Phys Rev B,2011, 84(16): 165208.

    [18] [18] PEI J, CAI B W, ZHUANG H L, et al. Bi2Te3-based applied thermoelectric materials: Research advances and new challenges[J].Natl Sci Rev, 2020, 7(12): 1856–1858.

    [19] [19] JIANG J, CHEN L D, BAI S Q, et al. Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering[J]. Mater Sci Eng B, 2005, 117(3): 334–338.

    [20] [20] YAMASHITA O, TOMIYOSHI S. Effect of annealing on thermoelectric properties of bismuth telluride compounds doped with various additives[J]. J Appl Phys, 2004, 95(1): 161–169.

    [21] [21] ZHU T J, HU L P, ZHAO X B, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials[J]. Adv Sci, 2016, 3(7):1600004.

    [22] [22] NAVRáTIL J, STARY Z, PLECHáC? EK T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing[J]. Mater Res Bull, 1996, 31(12): 1559–1566.

    [23] [23] OH T. Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys[J]. Scr Mater, 2000, 42(9): 849–854.

    [24] [24] JIANG J, CHEN L D, BAI S Q, et al. Thermoelectric performance of p-type Bi–Sb–Te materials prepared by spark plasma sintering[J]. J Alloys Compd, 2005, 390(1/2): 208–211.

    [25] [25] HU L P, ZHU T J, LIU X H, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J].Adv Funct Mater, 2014, 24(33): 5211–5218.

    [26] [26] YIM W M, FITZKE E V, ROSI F D. Thermoelectric properties of Bi2Te3–Sb2Te3–Sb2Se3 pseudo-ternary alloys in the temperature range77 to 300 K[J]. J Mater Sci, 1966, 1(1): 52–65.

    [27] [27] HU L P, LIU X H, XIE H H, et al. Improving thermoelectric properties of n-type bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement[J]. Acta Mater, 2012, 60(11): 4431–4437.

    [28] [28] YAN X, POUDEL B, MA Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3[J]. Nano Lett, 2010, 10(9): 3373–3378.

    [29] [29] LI L, WEI P, YANG M J, et al. Strengthened interlayer interaction and improved room-temperature thermoelectric performance of Ag-doped n-type Bi2Te2.7Se0.3[J]. Sci China Mater, 2023, 66(9): 3651–3658.

    [30] [30] LU T Q, NAN P F, SONG S L, et al. Enhanced thermoelectric performance through homogenously dispersed MnTe nanoparticles in p-type Bi0.52Sb1.48Te3 nanocomposites[J]. Chin Phys B, 2018, 27(4):047207.

    [31] [31] TANG X F, XIE W J, LI H, et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure[J]. Appl Phys Lett, 2007, 90(1): 012102.

    [32] [32] POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science,2008, 320(5876): 634–638.

    [33] [33] ZHU T J, XU Z J, HE J, et al. Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials[J]. J Mater Chem A, 2013, 1(38):11589–11594.

    [34] [34] XU Z J, HU L P, YING P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi,Sb)2Te3 thermoelectric materials by hot deformation[J]. Acta Mater, 2015, 84: 385–392.

    [35] [35] DENG R G, SU X L, HAO S Q, et al. High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe[J]. Energy Environ Sci,2018, 11(6): 1520–1535.

    [36] [36] YANG G S, NIU R M, SANG L N, et al. Ultra-high thermoelectric performance in bulk BiSbTe/amorphous boron composites with nano-defect architectures[J]. Adv Energy Mater, 2020, 10(41):2000757.

    [37] [37] YANG G S, SANG L N, YUN F F, et al. Significant enhancement of thermoelectric figure of merit in BiSbTe-based composites by incorporating carbon microfiber[J]. Adv Funct Mater, 2021, 31(15):2008851.

    [38] [38] KIM S I, LEE K H, MUN H A, et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics[J]. Science, 2015, 348(6230): 109–114.

    [39] [39] PAN Y, AYDEMIR U, GROVOGUI J A, et al. Melt-centrifuged (Bi,Sb)2Te3: Engineering microstructure toward high thermoelectric efficiency[J]. Adv Mater, 2018: e1802016.

    [40] [40] ZHUANG H L, PEI J, CAI B W, et al. Thermoelectric performance enhancement in BiSbTe alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase[J]. Adv Funct Materials, 2021,31(15): 2009681.

    [41] [41] SAGLIK K, YAHYAOGLU M, CANDOLFI C, et al. Enhancing thermoelectric and mechanical properties of p-type (Bi,Sb)2Te3 through rickardite mineral (Cu2.9Te2) incorporation[J]. Chem Mater, 2023,35(9): 3603–3613.

    [42] [42] WANG Y, YANG X, FENG J, et al. Nanostructuring and band engineering boosting thermoelectric performance of Bi–Sb–Te alloys via CsBr doping[J]. Sci China Mater, 2023, 66(10): 3991–4000.

    [43] [43] MARTINEZ M, HAASE A, BRAUER G. Crystal-structure of alpha-Mg3Sb2[J]. Acta Crystallogr B, 1974, 30(15): 2006–2009.

    [44] [44] LI A R, FU C G, ZHAO X B, et al. High-performance Mg3Sb2–xBix thermoelectrics: Progress and perspective[J]. Research, 2020, 2020:1934848.

    [45] [45] ZHENG C, HOFFMANN R, NESPER R, et al. Site preferences and bond length differences in CaAl2Si2-type Zintl compounds[J]. J Am Chem Soc, 1986, 108(8): 1876–1884.

    [46] [46] ZHANG J W, SONG L R, PEDERSEN S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands[J]. Nat Commun, 2017, 8: 13901.

    [47] [47] TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered zintl compounds with high thermoelectric performance[J]. Adv Mater, 2016, 28(46):10182–10187.

    [48] [48] ZHANG X M, JIN L, DAI X F, et al. Topological type-II nodal line semimetal and dirac semimetal state in stable kagome compound Mg3Bi2[J]. J Phys Chem Lett, 2017, 8(19): 4814–4819.

    [49] [49] ULLAH M, MURTAZA G, RAMAY S M, et al. Structural, electronic,optical and thermoelectric properties of Mg3X2 (X=N, P, As, Sb, Bi)compounds[J]. Mater Res Bull, 2017, 91: 22–30.

    [50] [50] IMASATO K, KANG S D, OHNO S, et al. Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance[J]. Mater Horiz, 2018, 5(1): 59–64.

    [51] [51] GORAI P, ORTIZ B R, TOBERER E S, et al. Investigation of n-type doping strategies for Mg3Sb2[J]. J Mater Chem A, 2018, 6(28):13806–13815.

    [52] [52] MAO J, SHUAI J, SONG S W, et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials[J]. Proc Natl Acad Sci USA, 2017, 114(40): 10548–10553.

    [53] [53] XING T, ZHU C X, SONG Q F, et al. Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) Co-doped GeTe[J]. Adv Mater, 2021, 33(17): e2008773.

    [54] [54] IMASATO K, KANG S D, SNYDER G J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery[J].Energy Environ Sci, 2019, 12(3): 965–971.

    [55] [55] HAN Z J, GUI Z G, ZHU Y B, et al. The electronic transport channel protection and tuning in real space to boost the thermoelectric performance of Mg3+δSb2–yBiy near room temperature[J]. Research,2020, 2020: 1672051.

    [56] [56] MAO J, ZHU H T, DING Z W, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019,365(6452): 495–498.

    [57] [57] WOOD M, KUO J J, IMASATO K, et al. Improvement of low-temperature zT in a Mg3Sb2–Mg3Bi2 solid solution via Mg-vapor annealing[J]. Adv Mater, 2019, 31(35): e1902337.

    [58] [58] SONG S W, MAO J, SHUAI J, et al. Study on anisotropy of n-type Mg3Sb2-based thermoelectric materials[J]. Appl Phys Lett, 2018,112(9): 092103.

    [59] [59] LI J W, LIU W S, XU W, et al. Bi-deficiency leading to high-performance in Mg3(Sb,Bi)2-based thermoelectric materials[J].Adv Mater, 2023, 35(23): e2209119.

    [60] [60] LIANG Z X, XU C C, SHANG H J, et al. Near-room-temperature thermoelectric performance enhancement via phonon spectra mismatch in Mg3(Sb,Bi)2-based material by incorporating multi-walled carbon nanotubes[J]. Adv Energy Mater, 2023, 13(25): 2301107.

    [61] [61] KIRKHAM M J, DOS SANTOS A M, RAWN C J, et al. Abinitio determination of crystal structures of the thermoelectric material MgAgSb[J]. Phys Rev B, 2012, 85(14): 144120.

    [62] [62] ZHAO H Z, SUI J, TANG Z J, et al. High thermoelectric performance of MgAgSb-based materials[J]. Nano Energy, 2014, 7: 97–103.

    [63] [63] KRAEMER D, SUI J, MCENANEY K, et al. High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts[J]. Energy Environ Sci, 2015, 8(4): 1299–1308.

    [64] [64] ROWE D M. CRC handbook of thermoelectrics[M]. Boca Raton, FL:CRC Press, 1995.

    [65] [65] ZHAO L D, LO S H, ZHANG Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J].Nature, 2014, 508(7496): 373–377.

    [66] [66] ZHAO L D, TAN G J, HAO S Q, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J].Science, 2016, 351(6269): 141–144.

    [67] [67] CHANG C, WU M H, HE D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane zT in n-type SnSe crystals[J].Science, 2018, 360(6390): 778–783.

    [68] [68] SU L Z, WANG D Y, WANG S N, et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling[J]. Science, 2022, 375(6587): 1385–1389.

    [69] [69] QIN B C, WANG D Y, LIU X X, et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments[J]. Science, 2021, 373(6554): 556–561.

    [70] [70] QIN B C, ZHAO L D. Moving fast makes for better cooling[J].Science, 2022, 378(6622): 832–833.

    [71] [71] LIU D R, WANG D Y, HONG T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics[J]. Science, 2023,380(6647): 841–846.

    [72] [72] QIN B C, WANG D Y, HONG T, et al. High thermoelectric efficiency realized in SnSe crystals via structural modulation[J]. Nat Commun,2023, 14(1): 1366.

    [73] [73] QIN Y X, QIN B C, HONG T, et al. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3[J].Science, 2024, 383(6688): 1204–1209.

    [74] [74] ZHU Y C, YU Y, ZHANG H D, et al. Large mobility enables higher thermoelectric cooling and power generation performance in n-type AgPb18+xSbTe20 crystals[J]. J Am Chem Soc, 2023: 24931–24939.

    [75] [75] LIU S B, QIN Y X, WEN Y, et al. Efforts toward the fabrication of thermoelectric cooling module based on N-type and P-type PbTe ingots[J]. Adv Funct Materials, 2024, 34(26): 2315707.

    [76] [76] ZHAO L D, CHANG C, TAN G J, et al. SnSe: A remarkable new thermoelectric material[J]. Energy Environ Sci, 2016, 9(10): 3044–3060.

    [77] [77] SHI G S, KIOUPAKIS E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe[J]. J Appl Phys,2015, 117(6): Q12.009.

    [78] [78] EKTARAWONG A, BOVORNRATANARAKS T, ALLING B. Role of spin-orbit coupling in the alloying behavior of multilayer Bi1–xSbx solid solutions revealed by a first-principles cluster expansion[J]. Phys Rev B, 2020, 101(13): 134104.

    [79] [79] DEVAUX X, BROCHIN F, DAUSCHER A, et al. Production of ultrafine powders of Bi–Sb solid solution[J]. Nanostruct Mater, 1997,8(2): 137–147.

    [80] [80] LENOIR B, SCHERRER H, CAILLAT T. Chapter 4 An overview of recent developments for BiSb Alloys[M]//Recent Trends in Thermoelectric Materials Research I. Amsterdam: Elsevier, 2001: 101–137.

    [81] [81] KOZHEMYAKIN G N, ZAYAKIN S A. High magnetoresistance in Bi0.91Sb0.09 single crystals doped with Te and Sn[J]. J Appl Phys, 2020,127(13): 133904.

    [82] [82] BASU R, SINGH A. High temperature Si–Ge alloy towards thermoelectric applications: A comprehensive review[J]. Mater Today Phys, 2021, 21: 100468.

    [83] [83] TILLER W A, JACKSON K A, RUTTER J W, et al. The redistribution of solute atoms during the solidification of metals[J]. Acta Metall,1953, 1(4): 428–437.

    [84] [84] SMITH G E, WOLFE R. Thermoelectric properties of bismuthantimony alloys[J]. J Appl Phys, 1962, 33(3): 841–846.

    [85] [85] YIM W M, AMITH A. Bi–Sb alloys for magneto-thermoelectric and thermomagnetic cooling[J]. Solid State Electron, 1972, 15(10):1141–1165.

    [86] [86] LENOIR B, CASSART M, KINANY-ALAOUI M, et al.Thermoelectric properties of Bi-Sb alloys prepared by THM[C]//AIP Conference Proceedings. Kansas City, Missouri (USA). AIP, 1994:230–234.

    [87] [87] LENOIR B, DEMOUGE A, PERRIN D, et al. Growth of Bi1–xSbx alloys by the traveling heater method[J]. J Phys Chem Solids, 1995,56(1): 99–105.

    [88] [88] KOZHEMYAKIN G N, NALIVKIN M A, ROM M A, et al. Growing Bi–Sb gradient single crystals by a modified Czochralski method[J]. J Cryst Growth, 2004, 263(1–4): 148–155.

    [89] [89] KOZHEMYAKIN G N, LUTSKIY D V, ROM M A, et al. Growth of SbxBi1–x gradient single crystals by the Czochralski method with Bi feed[J]. J Cryst Growth, 2009, 311(6): 1466–1470.

    [90] [90] ZEMSKOV V S, BELAYA A D, KOZHEMYAKIN G N, et al. Growth of single crystals of bismuth-antimony alloys by Czochralski method[J]. J Cryst Growth, 1985, 71(1): 243–245.

    [91] [91] ZEMSKOV V S, BELAYA A D, BELUY U S, et al. Growth and investigation of thermoelectric properties of Bi–Sb alloy single crystals[J]. J Cryst Growth, 2000, 212(1/2): 161–166.

    [92] [92] KITAGAWA H, NOGUCHI H, KIYABU T, et al. Thermoelectric properties of Bi–Sb semiconducting alloys prepared by quenching and annealing[J]. J Phys Chem Solids, 2004, 65(7): 1223–1227.

    [93] [93] HOR Y S, CAVA R J. Thermoelectric properties of Sn-doped Bi–Sb[J].J Alloys Compd, 2009, 479(1/2): 368–371.

    [94] [94] MARTIN-LOPEZ R, LENOIR B, DEVAUX X, et al. Mechanical alloying of BiSb semiconducting alloys[J]. Mater Sci Eng A, 1998,248(1/2): 147–152.

    [95] [95] COMBE E, FUNAHASHI R, TAKEUCHI T, et al. Thermal deformation effects on thermoelectric properties for Bi0.82Sb0.18 alloys[J]. J Alloys Compd, 2017, 692: 563–568.

    [96] [96] MARTIN-LOPEZ R, DAUSCHER A, SCHERRER H, et al.Thermoelectric properties of mechanically alloyed Bi–Sb alloys[J].Appl Phys A Mater Sci Process, 1999, 68(5): 597–602.

    [97] [97] SONG C M, HUANG R J, ZHOU M, et al. Low-temperature thermoelectric properties of Bi85Sb15–xNbx alloys prepared by high-press sintering[J]. J Phys Chem Solids, 2010, 71(7): 999–1003.

    [98] [98] HUANG R J, SONG C M, CAI F S, et al. Thermoelectric performance of ternary Bi–Sb–Ag alloys prepared by mechanical alloying and subsequent pressureless sintering[J]. J Phys Chem Solids, 2007, 68(7):1400–1404.

    [99] [99] ZHOU M, CHEN Z, CHU X X, et al. Effect of nano-ZrW2O8 on the thermoelectric properties of Bi85Sb15/ZrW2O8 composites[J]. J Electron Mater, 2012, 41(6): 1263–1266.

    [100] [100] LUO T T, WANG S Y, LI H, et al. Low temperature thermoelectric properties of melt spun Bi85Sb15 alloys[J]. Intermetallics, 2013, 32:96–102.

    [101] [101] GAO S, GASKINS J, HU X X, et al. Enhanced figure of merit in bismuth-antimony fine-grained alloys at cryogenic temperatures[J].Sci Rep, 2019, 9(1): 14892.

    [102] [102] WANG J, ZHU C, LUO F, et al. Magnetism modulation for cryogenic thermoelectric enhancements in Fe3O4 nanoparticle-incorporated Bi0.85Sb0.15 nanocomposites[J]. ACS Appl Mater Interfaces, 2023,15(6): 8105–8119.

    [103] [103] WANG J, LUO F, ZHU C, et al. Cryogenic thermoelectric enhancements in SbCl3-doped porous Bi0.85Sb0.15 alloys[J]. J Mater Chem C, 2023, 11(12): 4056–4069.

    [104] [104] CHUNG D Y, HOGAN T P, ROCCI-LANE M, et al. A new thermoelectric material: CsBi4Te6[J]. J Am Chem Soc, 2004, 126(20):6414–6428.

    [105] [105] GREANYA V A, TONJES W C, LIU R, et al. Angle-resolved photoemission study of the high-performance low-temperature thermoelectric material CsBi4Te6[J]. Phys Rev B, 2002, 65(20):205123.

    [106] [106] SCHINDLER J L, HOGAN T P, BRAZIS P W, et al. Electrical properties and figures of merit for new chalcogenide-based thermoelectric materials[J]. MRS Online Proc Libr, 1997, 478(1):327–332.

    [107] [107] KANG C J, KOTLIAR G. Study for material analogs of FeSb2: Material design for thermoelectric materials[J]. Phys Rev Materials,2018, 2(3): 034604.

    [108] [108] BENTIEN A, JOHNSEN S, MADSEN G K H, et al. Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2[J]. Europhys Lett, 2007, 80(1): 17008.

    [109] [109] SUN P J, OESCHLER N, JOHNSEN S, et al. Narrow band gap and enhanced thermoelectricity in FeSb2[J]. Dalton Trans, 2010, 39(4):1012–1019.

    [110] [110] JANAKI J, MANI A, SATYA A T, et al. Influence of Ni doping on the electrical and structural properties of FeSb2[J]. Phys Status Solidi B,2012, 249(9): 1756–1760.

    [111] [111] ZHAO H Z, POKHAREL M, ZHU G H, et al. Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2[J]. Appl Phys Lett, 2011,99(16): 163101.

    [112] [112] KOIRALA M, ZHAO H Z, POKHAREL M, et al. Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2[J].Appl Phys Lett, 2013, 102(21): 213111.

    [113] [113] TAKAHASHI H, OKAZAKI R, ISHIWATA S, et al. Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2[J]. Nat Commun, 2016, 7: 12732.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Min, SU Haojian, SHI Li, LI Laifeng. Progress on Thermoelectric Cooling Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(10): 3311

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 21, 2024

    Accepted: --

    Published Online: Nov. 14, 2024

    The Author Email: Li SHI (shili@mail.ipc.ac.cn)

    DOI:10.14062/j.issn.0454-5648.20240129

    Topics