Journal of the European Optical Society-Rapid Publications, Volume. 18, Issue 2, 2022009(2022)

Ultrafast broadband optical modulation in indium tin oxide/titanium dioxide 1D photonic crystal

Liliana Moscardi1,2, Stefano Varas3, Alessandro Chiasera3, Francesco Scotognella1,2、*, and Michele Guizzardi1
Author Affiliations
  • 1Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
  • 2Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia (IIT), Via Giovanni Pascoli, 70/3, 20133 Milan, Italy
  • 3Istituto di Fotonica e Nanotecnologie IFN – CNR, Via alla Cascata, 56/C, 3812 Povo – Trento, Italy
  • show less

    [1] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486-2489(1987).

    [2] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [3] J.D. Joannopoulos. Photonic crystals: Molding the flow of light(2008).

    [4] K. Sakoda. Optical properties of photonic crystals(2005).

    [5] T. Komikado, S. Yoshida, S. Umegaki. Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating. Appl. Phys. Lett., 89, 061123(2006).

    [6] F. Scotognella, A. Monguzzi, M. Cucini, F. Meinardi, D. Comoretto, R. Tubino. One dimensional polymeric organic photonic crystals for DFB lasers. Int. J. Photoenergy, 2008, 389034(2008).

    [7] F. Scotognella, A. Monguzzi, F. Meinardi, R. Tubino. DFB laser action in a flexible fully plastic multilayer. Phys. Chem. Chem. Phys., 12, 337-340(2009).

    [8] F. Scotognella, D.P. Puzzo, M. Zavelani-Rossi, J. Clark, M. Sebastian, G.A. Ozin, G. Lanzani. Two-photon poly(phenylenevinylene) DFB laser. Chem. Mater., 23, 805-809(2011).

    [9] R. Li Voti. Optimization of a perfect absorber multilayer structure by genetic algorithms. J. Eur. Opt. Soc.-Rapid Publ., 14, 1-12(2018).

    [10] Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, G. Liu. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express, 27, 11809-11818(2019).

    [11] S.Y. Choi, M. Mamak, G. von Freymann, N. Chopra, G.A. Ozin. Mesoporous Bragg stack color tunable sensors. Nano Lett., 6, 2456-2461(2006).

    [12] A. von Mankowski, K. Szendrei-Temesi, C. Koschnick, B.V. Lotsch. Improving analyte selectivity by post-assembly modification of metal-organic framework based photonic crystal sensors. Nanoscale Horiz., 3, 383-390(2018).

    [13] V. González-Pedro, M.E. Calvo, H. Míguez, Á. Maquieira. Nanoparticle Bragg reflectors: A smart analytical tool for biosensing. Biosens. Bioelectron. X, 1, 100012(2019).

    [14] H. Megahd, C. Oldani, S. Radice, A. Lanfranchi, M. Patrini, P. Lova, D. Comoretto. Aquivion–poly(N-vinylcarbazole) holistic flory-huggins photonic vapor sensors. Adv. Opt. Mater., 9, 2002006(2021).

    [15] H. Megahd, P. Lova, D. Comoretto. Universal Design Rules for Flory-Huggins Polymer Photonic Vapor Sensors. Adv. Opt. Mater., 31, 2009626(2021).

    [16] C. López. Materials aspects of photonic crystals. Adv. Mater., 15, 1679-1704(2003).

    [17] Z.V. Vardeny, A. Nahata, A. Agrawal. Optics of photonic quasicrystals. Nat. Photon., 7, 177-187(2013).

    [18] D.S. Wiersma. Disordered photonics. Nat. Photon., 7, 188-196(2013).

    [19] A. Chiasera, F. Scotognella, L. Criante, S. Varas, G.D. Valle, R. Ramponi, M. Ferrari. Disorder in photonic structures induced by random layer thickness. Sci Adv Mater., 7, 1207-1212(2015).

    [20] E. Feigenbaum, K. Diest, H.A. Atwater. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett., 10, 2111-2116(2010).

    [21] S. Heo, A. Agrawal, D.J. Milliron. Wide dynamic range in tunable electrochromic Bragg stacks from doped semiconductor nanocrystals. Adv. Funct. Mater., 29, 1904555(2019).

    [22] L. Moscardi, G.M. Paternò, A. Chiasera, R. Sorrentino, F. Marangi, I. Kriegel, G. Lanzani, F. Scotognella. Electro-responsivity in electrolyte-free and solution processed Bragg stacks. J. Mater. Chem. C., 8, 13019-13024(2020).

    [23] G. Cerullo, C. Manzoni, L. Lüer, D. Polli. Time-resolved methods in biophysics. 4. Broadband pump–probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis. Photochem. Photobiol. Sci., 6, 135-144(2007).

    [24] M.A. Blemker, S.L. Gibbs, E.K. Raulerson, D.J. Milliron, S.T. Roberts. Modulation of the visible absorption and reflection profiles of ITO nanocrystal thin films by plasmon excitation. ACS Photonics., 7, 1188-1196(2020).

    [25] A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini. Review on: Titanium dioxide applications. Energy Procedia, 157, 17-29(2019).

    [26] M.E. Khan, M.M. Khan, B.-K. Min, M.H. Cho. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep., 8, 1723(2018).

    [27] M. Born, E. Wolf, A.B. Bhatia, P.C. Clemmow, D. Gabor, A.R. Stokes, A.M. Taylor, P.A. Wayman, W.L. Wilcock. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light(1999).

    [28] F. Scotognella, A. Chiasera, L. Criante, E. Aluicio-Sarduy, S. Varas, S. Pelli, A. Łukowiak, G.C. Righini, R. Ramponi, M. Ferrari. Metal oxide one dimensional photonic crystals made by RF sputtering and spin coating. Ceram. Int., 41, 8655-8659(2015).

    [29] I. Kriegel, F. Scotognella, L. Manna. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Phys. Rep., 674, 1-52(2017).

    [30] M.Z. Alam, I. De Leon, R.W. Boyd. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [31] M. Lorenc, M. Ziolek, R. Naskrecki, J. Karolczak, J. Kubicki, A. Maciejewski. Artifacts in femtosecond transient absorption spectroscopy. Appl. Phys. B: Lasers Opt., 74, 19-27(2002).

    [32] K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, J.-C. Mialocq. Cross phase modulation artifact in liquid phase transient absorption spectroscopy. J. Appl. Phys., 87, 2340-2352(2000).

    [33] A. Bresci, M. Guizzardi, C.M. Valensise, F. Marangi, F. Scotognella, G. Cerullo, D. Polli. Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning. APL Photon., 6, 076104(2021).

    [34] R.W. Johns, M.A. Blemker, M.S. Azzaro, S. Heo, E.L. Runnerstrom, D.J. Milliron, S.T. Roberts. Charge carrier concentration dependence of ultrafast plasmonic relaxation in conducting metal oxide nanocrystals. J. Mater. Chem. C., 5, 5757-5763(2017).

    [35] P. Guo, R.D. Schaller, L.E. Ocola, B.T. Diroll, J.B. Ketterson, R.P.H. Chang. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nat. Commun., 7, 12892_1-12892_10(2016).

    [36] G.M. Paternò, C. Iseppon, A. D’Altri, C. Fasanotti, G. Merati, M. Randi, A. Desii, E.A.A. Pogna, D. Viola, G. Cerullo, F. Scotognella, I. Kriegel. Solution processable and optically switchable 1D photonic structures. Sci Rep., 8, 1-8(2018).

    [37] S. Kinoshita, S. Yoshioka, J. Miyazaki. Physics of structural colors. Rep. Prog. Phys., 71, 076401(2008).


    Get Citation

    Copy Citation Text

    Liliana Moscardi, Stefano Varas, Alessandro Chiasera, Francesco Scotognella, Michele Guizzardi. Ultrafast broadband optical modulation in indium tin oxide/titanium dioxide 1D photonic crystal[J]. Journal of the European Optical Society-Rapid Publications, 2022, 18(2): 2022009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 24, 2022

    Accepted: Aug. 27, 2022

    Published Online: Mar. 17, 2023

    The Author Email: Scotognella Francesco (