Photonics Research, Volume. 10, Issue 2, 433(2022)

Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link

Guan Wang1,2、†, Zhongwang Pang1,2、†, Bohan Zhang1, Fangmin Wang1,2, Yufeng Chen1,2, Hongfei Dai1,2, Bo Wang1,2、*, and Lijun Wang1,2
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
  • show less
    References(45)

    [1] L.-S. Ma, P. Jungner, J. Ye, J. L. Hall. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., 19, 1777-1779(1994).

    [2] N. R. Newbury, P. A. Williams, W. C. Swann. Coherent transfer of an optical carrier over 251 km. Opt. Lett., 32, 3056-3058(2007).

    [3] M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, T. Ido. All-optical link for direct comparison of distant optical clocks. Opt. Express, 19, 16498-16507(2011).

    [4] K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, H. Schnatz. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 336, 441-444(2012).

    [5] B. Wang, C. Gao, W. L. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, L. J. Wang. Precise and continuous time and frequency synchronisation at the 5 × 10−19 accuracy level. Sci. Rep., 2, 556(2012).

    [6] D. Calonico, E. K. Bertacco, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, F. Levi. High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Appl. Phys. B, 117, 979-986(2014).

    [7] T. B. Gibbon, E. K. Rotich Kipnoo, R. R. G. Gamatham, A. W. R. Leitch, R. Siebrits, R. Julie, S. Malan, W. Rust, F. Kapp, T. L. Venkatasubramani, B. Wallace, A. Peens-Hough, P. Herselman. Fiber-to-the-telescope: MeerKAT, the South African precursor to square kilometre telescope array. J. Astron. Telesc. Instrum. Syst., 1, 028001(2015).

    [8] C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, P.-E. Pottie. A clock network for geodesy and fundamental science. Nat. Commun., 7, 12443(2016).

    [9] D. Li, C. Qian, Y. Li, J. Y. Zhao. Efficient laser noise reduction method via actively stabilized optical delay line. Opt. Express, 25, 9071-9077(2017).

    [10] C. Clivati, A. Tampellini, A. Mura, F. Levi, G. Marra, P. Galea, A. Xuereb, D. Calonico. Optical frequency transfer over submarine fiber links. Optica, 5, 893-901(2018).

    [11] Y. He, K. G. H. Baldwin, B. J. Orr, R. B. Warrington, M. J. Wouters, A. N. Luiten, P. Mirtschin, T. Tzioumis, C. Phillips, J. Stevens, B. Lennon, S. Munting, G. Aben, T. Newlands, T. Rayner. Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy. Optica, 5, 138-146(2018).

    [12] S. Ebenhag, P. O. Hedekvist, C. Rieck, M. Bergroth, P. Krehlik, L. Sliwczynski. Evaluation of fiber optic time and frequency distribution system in a coherent communication network. Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1-5(2019).

    [13] J. B. Ajo-Franklin, S. Dou, N. J. Lindsey, I. Monga, C. Tracy, M. Robertson, V. Rodriguez Tribaldos, C. Ulrich, B. Freifeld, T. Daley, X. Li. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci. Rep., 9, 1328(2019).

    [14] M. Karrenbach, S. Cole, L. LaFlame, E. Bozdağ, W. Trainor-Guitton, B. Luo. Horizontally orthogonal distributed acoustic sensing array for earthquake- and ambient-noise-based multichannel analysis of surface waves. Geophys. J. Int., 222, 2147-2161(2020).

    [15] G. Marra, C. Clivati, R. Luckett, A. Tampellini, J. Kronjaeger, L. Wright, A. Mura, F. Levi, S. Robinson, A. Xuereb, B. Baptie, D. Calonico. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, 361, 486-490(2018).

    [16] P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, C. M. Krawczyk. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun., 9, 2509(2018).

    [17] E. F. Williams, M. R. Fernandez-Ruiz, R. Magalhaes, R. Vanthillo, Z. Zhan, M. Gonzalez-Herraez, H. F. Martins. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun., 10, 5778(2019).

    [18] A. Sladen, D. Rivet, J. P. Ampuero, L. De Barros, Y. Hello, G. Calbris, P. Lamare. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun., 10, 5777(2019).

    [19] A. Mecozzi, M. Cantono, J. C. Castellanos, V. Kamalov, R. Muller, Z. Zhan. Polarization sensing using submarine optical cables. Optica, 8, 788-795(2021).

    [20] Y. C. Guo, B. Wang, H. W. Si, Z. W. Cai, A. M. Zhang, X. Zhu, J. Yang, K. M. Feng, C. H. Han, T. C. Li, L. J. Wang. Correlation measurement of co-located hydrogen masers. Metrologia, 55, 631-636(2018).

    [21] Y. C. Guo, B. Wang, F. M. Wang, F. F. Shi, A. M. Zhang, X. Zhu, J. Yang, K. M. Feng, C. H. Han, T. C. Li, L. J. Wang. Real-time free-running time scale with remote clocks on fiber-based frequency network. Metrologia, 56, 045003(2019).

    [22] D. A. Jackson, A. Dandridge, S. K. Sheem. Measurement of small phase shifts using a single-mode optical-fiber interferometer. Opt. Lett., 5, 139-141(1980).

    [23] Q. M. Chen, C. Jin, Y. Bao, Z. H. Li, J. P. Li, C. Lu, L. Yang, G. F. Li. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer. Opt. Express, 22, 2167-2173(2014).

    [24] J. W. Huang, Y. C. Chen, Q. H. Song, H. K. Peng, P. W. Zhou, Q. Xiao, B. Jia. Distributed fiber-optic sensor for location based on polarization-stabilized dual-Mach-Zehnder interferometer. Opt. Express, 28, 24820-24832(2020).

    [25] Z. S. Sun, K. Liu, J. F. Jiang, T. H. Xu, S. Wang, H. R. Guo, T. G. Liu. High accuracy and real-time positioning using MODWT for long range asymmetric interferometer vibration sensors. J. Lightwave Technol., 39, 2205-2214(2021).

    [26] Y. X. Yan, F. N. Khan, B. Zhou, A. P. T. Lau, C. Lu, C. J. Guo. Forward transmission based ultra-long distributed vibration sensing with wide frequency response. J. Lightwave Technol., 39, 2241-2249(2021).

    [27] P. Healey. Statistics of Rayleigh backscatter from a single-mode fiber. IEEE Trans. Commun. Technol., 35, 210-214(1987).

    [28] Y. L. Lu, T. Zhu, L. Chen, X. Y. Bao. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Lightwave Technol., 28, 3242-3249(2010).

    [29] H. J. Wu, X. R. Liu, Y. Xiao, Y. J. Rao. A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) for pipeline safety monitoring with Φ-OTDR. J. Lightwave Technol., 37, 4991-5000(2019).

    [30] N. J. Lindsey, T. C. Dawe, J. B. Ajo-Franklin. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366, 1103-1107(2019).

    [31] P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, P. R. Ohodnicki. Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev., 6, 041302(2019).

    [32] F. Walter, D. Gräff, F. Lindner, P. Paitz, M. Köpfli, M. Chmiel, A. Fichtner. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun., 11, 2436(2020).

    [33] Y. Y. Yang, Y. Li, T. J. Zhang, Y. Zhou, H. F. Zhang. Early safety warnings for long-distance pipelines: a distributed optical fiber sensor machine learning approach. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 14991-14999(2021).

    [34] S. R. Xie, Q. L. Zou, L. W. Wang, M. Zhang, Y. H. Li, Y. B. Liao. Positioning error prediction theory for dual Mach-Zehnder interferometric vibration sensor. J. Lightwave Technol., 29, 362-368(2011).

    [35] G. Wang, H. W. Si, Z. W. Pang, B. H. Zhang, H. Q. Hao, B. Wang. Noise analysis of the fiber-based vibration detection system. Opt. Express, 29, 5588-5597(2021).

    [36] G. C. Carter. Coherence and time delay estimation. Proc. IEEE, 75, 236-255(1987).

    [37] X. J. Fang. Fiber-optic distributed sensing by a two-loop Sagnac interferometer. Opt. Lett., 21, 444-446(1996).

    [38] P. F. Du, S. Zhang, C. Chen, A. Alphones, W. D. Zhong. Demonstration of a low-complexity indoor visible light positioning system using an enhanced TDOA scheme. IEEE Photonics J., 10, 7905110(2018).

    [39] J. W. Dong, B. Wang, C. Gao, Y. C. Guo, L. J. Wang. Highly accurate fiber transfer delay measurement with large dynamic range. Opt. Express, 24, 1368-1375(2016).

    [40] H. W. Si, B. Wang, J. W. Dong, L. J. Wang. Accurate self-calibrated fiber transfer delay measurement. Rev. Sci. Instrum., 89, 083117(2018).

    [41] Q. Li, S. X. Xu, J. W. Yu, L. J. Yan, Y. M. Huang. An improved method for the position detection of a quadrant detector for free space optical communication. Sensors, 19, 175(2019).

    [42] S. R. Xie, M. Zhang, Y. H. Li, Y. B. Liao. Positioning error reduction technique using spectrum reshaping for distributed fiber interferometric vibration sensor. J. Lightwave Technol., 30, 3520-3524(2012).

    [43] A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, A. Amy-Klein. Two-way optical frequency comparisons at 5 × 10−21 relative stability over 100-km telecommunication network fibers. Phys. Rev. A, 90, 061802(2014).

    [44] L. Hu, X. Y. Tian, G. L. Wu, J. G. Shen, J. P. Chen. Fundamental limitations of Rayleigh backscattering noise on fiber-based multiple-access optical frequency transfer(2020).

    [45] V. K. Madissetti. Digital Signal Processing Handbook(2010).

    CLP Journals

    [1] Guan Wang, Zhongwang Pang, Bohan Zhang, Fangmin Wang, Yufeng Chen, Hongfei Dai, Bo Wang, Lijun Wang, "Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link: publisher’s note," Photonics Res. 10, 1839 (2022)

    Tools

    Get Citation

    Copy Citation Text

    Guan Wang, Zhongwang Pang, Bohan Zhang, Fangmin Wang, Yufeng Chen, Hongfei Dai, Bo Wang, Lijun Wang, "Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link," Photonics Res. 10, 433 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation and Measurements

    Received: Sep. 10, 2021

    Accepted: Dec. 9, 2021

    Published Online: Jan. 21, 2022

    The Author Email: Bo Wang (bo.wang@tsinghua.edu.cn)

    DOI:10.1364/PRJ.443019

    Topics