Chinese Journal of Lasers, Volume. 52, Issue 3, 0307104(2025)

Large Kernel Convolution and Transformer Parallelism Based 3D Medical Image Registration Modeling

Jing Peng, Jiarong Yan*, Yu Shen, Jiaying Liu, Ziyi Wei, Shan Bai, Jiangcheng Li, Yukun Ma, and Ruoxuan Wang
Author Affiliations
  • School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu , China
  • show less
    Figures & Tables(14)
    Unsupervised medical image registration framework
    PLKCT-UNet registration network
    Large kernel convolution module
    3D Swin Transformer module
    Multi-scale attention aggregation (MSAA) module
    OASIS dataset preprocessing procedure
    Registration results on the OASIS dataset. (a) The fixed image to be registered; (b) the moving image to be registered; (c) registration of ANTs; (d) registration of VoxelMorph-V1; (e) registration of VoxelMorph-V2; (f) registration of SYM-Net; (g) registration of SymTrans; (h) registration of TransMorph; (i) registration of TransMatch; (j) registration of our algorithm
    Comparison of ablation experiment. (a) The fixed image to be registered; (b) the moving image to be registered; (c) registration of VoxelMorph-V1; (d) registration of LKC Block; (e) registration of 3D Swin Transformer; (f) registration of MSAA; (g) registration of PLKCT-UNet
    Comparison of generalization. (a) The fixed image to be registered; (b) the moving image to be registered; (c) registration of ANTs; (d) registration of VoxelMorph-V1; (e) registration of VoxelMorph-V2; (f) registration of SYM-Net; (g) registration of SymTrans; (h) registration of TransMorph; (i) registration of TransMatch; (j) registration of PLKCT-UNet
    • Table 1. Environment configuration

      View table

      Table 1. Environment configuration

      EnvironmentVersion
      GPURTX3090(24 GB)
      CUDA11.8
      Python3.8
      PyTorch2.0.1
    • Table 2. Parameters setting

      View table

      Table 2. Parameters setting

      Parameter settingValue
      Epoch500
      Iterations145000
      Batch_size1
      Learning rate1×10-4
      λ4.0
      γ0.67
      OptimizerAdam
    • Table 3. Model comparison results

      View table

      Table 3. Model comparison results

      ModelParameters /106DiceHDTime /s
      ANTs(SyN)0.7833.4133.68
      VoxelMorph-V10.360.7822.680.26
      VoxelMorph-V20.390.7942.620.28
      SYM-Net4.470.7892.640.36
      SymTrans16.050.8052.560.32
      TransMorph107.940.8182.490.43
      TransMatch112.410.8152.530.39
      Ours86.640.8242.460.34
    • Table 4. Results of the ablation experiment

      View table

      Table 4. Results of the ablation experiment

      ModelLKCSwin TransformerMSAADiceHD
      VoxelMorph×××0.7942.62
      ××0.8052.55
      ××0.8122.53
      ××0.7992.58
      0.8242.47
    • Table 5. Comparison of generalization

      View table

      Table 5. Comparison of generalization

      ModelDiceHDTime /s
      ANTs (SyN)0.6706.72427.84
      VoxelMorph-v10.6796.6980.25
      VoxelMorph-v20.6856.5810.34
      SYM-Net0.6976.4750.31
      SymTrans0.7036.4320.39
      TransMorph0.7126.3690.37
      TransMatch0.7096.3830.34
      PLKCT-UNet0.7166.3570.32
    Tools

    Get Citation

    Copy Citation Text

    Jing Peng, Jiarong Yan, Yu Shen, Jiaying Liu, Ziyi Wei, Shan Bai, Jiangcheng Li, Yukun Ma, Ruoxuan Wang. Large Kernel Convolution and Transformer Parallelism Based 3D Medical Image Registration Modeling[J]. Chinese Journal of Lasers, 2025, 52(3): 0307104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Oct. 15, 2024

    Accepted: Nov. 11, 2024

    Published Online: Jan. 20, 2025

    The Author Email: Yan Jiarong (yjr08140917@163.com)

    DOI:10.3788/CJL241269

    CSTR:32183.14.CJL241269

    Topics