Chinese Journal of Lasers, Volume. 50, Issue 3, 0307202(2023)
Progress of Glutathione-Responsive Photosensitizers for Tumor Therapy
[1] Chabner B A, Roberts T G. Chemotherapy and the war on cancer[J]. Nature Reviews Cancer, 5, 65-72(2005).
[2] Wu M Q, Ding Y M, Li L L. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy[J]. Nanoscale, 11, 19658-19683(2019).
[3] Cheng Z J, Zhang T, Wang W L et al. D-A-D structured selenadiazolesbenzothiadiazole-based near-infrared dye for enhanced photoacoustic imaging and photothermal cancer therapy[J]. Chinese Chemical Letters, 32, 1580-1585(2021).
[4] Ma X B, Li S J, Liu Y T et al. Bioengineered nanogels for cancer immunotherapy[J]. Chemical Society Reviews, 51, 5136-5174(2022).
[5] Li B H, Lin L S, Lin H Y et al. Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy[J]. Journal of Biophotonics, 9, 1314-1325(2016).
[6] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 8(2017).
[7] Wang S W, Lei M. Recent advances in two-photon excited photodynamic therapy[J]. Chinese Journal of Lasers, 49, 1507101(2022).
[8] Celli J P, Spring B Q, Rizvi I et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization[J]. Chemical Reviews, 110, 2795-2838(2010).
[9] Luby B M, Walsh C D, Zheng G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons[J]. Angewandte Chemie International Edition, 58, 2558-2569(2019).
[10] Li X S, Lee S Y, Yoon J Y. Supramolecular photosensitizers rejuvenate photodynamic therapy[J]. Chemical Society Reviews, 47, 1174-1188(2018).
[11] Plaetzer K, Krammer B, Berlanda J et al. Photophysics and photochemistry of photodynamic therapy: fundamental aspects[J]. Lasers in Medical Science, 24, 259-268(2009).
[12] Sharman W M, van Lier J E, Allen C M. Targeted photodynamic therapy via receptor mediated delivery systems[J]. Advanced Drug Delivery Reviews, 56, 53-76(2004).
[13] Li B H, Chen T L, Lin L et al. Recent progress in photodynamic therapy: from fundamental research to clinical applications[J]. Chinese Journal of Lasers, 49, 0507101(2022).
[14] Feng G X, Zhang G Q, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams[J]. Chemical Society Reviews, 49, 8179-8234(2020).
[15] Fan W P, Huang P, Chen X Y. Overcoming the achilles’ heel of photodynamic therapy[J]. Chemical Society Reviews, 45, 6488-6519(2016).
[16] Oleinick N L, Morris R L, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how[J]. Photochemical & Photobiological Sciences, 1, 1-21(2002).
[17] Dolmans D E J G J, Kadambi A, Hill J S et al. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy[J]. Cancer Research, 62, 2151-2156(2002).
[18] Zhao H Y, Wang Y C, Qiu H X et al. Photodynamic therapy and anti-tumor immunity[J]. Chinese Journal of Laser Medicine&Surgery, 23, 34-38(2014).
[19] Dai H M, Cheng Z J, Zhang T et al. Boron difluoride formazanate dye for high-efficiency NIR-Ⅱ fluorescence imaging-guided cancer photothermal therapy[J]. Chinese Chemical Letters, 33, 2501-2506(2022).
[20] Chen L P, Zuo W B, Xiao Z M et al. A carrier-free metal-coordinated dual-photosensitizers nanotheranostic with glutathione-depletion for fluorescence/photoacoustic imaging-guided tumor phototherapy[J]. Journal of Colloid and Interface Science, 600, 243-255(2021).
[21] Ma Q L, Sun X, Wang W L et al. Diketopyrrolopyrrole-derived organic small molecular dyes for tumor phototheranostics[J]. Chinese Chemical Letters, 33, 1681-1692(2022).
[22] Zhang M, Guo X L, Wang M F et al. Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges[J]. Journal of Controlled Release, 323, 203-224(2020).
[23] Yao C Z, Li Y M, Wang Z X et al. Cytosolic NQO1 enzyme-activated near-infrared fluorescence imaging and photodynamic therapy with polymeric vesicles[J]. ACS Nano, 14, 1919-1935(2020).
[24] Piao W, Hanaoka K, Fujisawa T et al. Development of an azo-based photosensitizer activated under mild hypoxia for photodynamic therapy[J]. Journal of the American Chemical Society, 139, 13713-13719(2017).
[25] Radunz S, Wedepohl S, Röhr M et al. pH-activatable singlet oxygen-generating boron-dipyrromethenes (BODIPYs) for photodynamic therapy and bioimaging[J]. Journal of Medicinal Chemistry, 63, 1699-1708(2020).
[26] Chen D P, Dai H M, Wang W L et al. Proton-driven transformable 1O2-nanotrap for dark and hypoxia tolerant photodynamic therapy[J]. Advanced Science, 9, 2200128(2022).
[27] Lan S Y, Zhang D, Liu X L et al. Tumor-microenvironment activable smart nanocarrier system for photodynamic therapy of cancers[J]. Chinese Journal of Lasers, 45, 0207008(2018).
[28] Singh S, Khan A R, Gupta A K. Role of glutathione in cancer pathophysiology and therapeutic interventions[J]. Journal of Experimental Therapeutics & Oncology, 9, 303-316(2012).
[29] Balendiran G K, Dabur R, Fraser D. The role of glutathione in cancer[J]. Cell Biochemistry and Function, 22, 343-352(2004).
[30] Sies H. Glutathione and its role in cellular functions[J]. Free Radical Biology and Medicine, 27, 916-921(1999).
[31] Henderson C J, Ritchie K J, McLaren A et al. Increased skin papilloma formation in mice lacking glutathione transferase GSTP[J]. Cancer Research, 71, 7048-7060(2011).
[32] Ritchie K J, Walsh S, Sansom O J et al. Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 20859-20864(2009).
[33] Li J J, Wang Q J, Yang Y et al. GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway[J]. Journal of Experimental & Clinical Cancer Research, 38, 438(2019).
[34] Barrett C W, Ning W, Chen X et al. Tumor suppressor function of the plasma glutathione peroxidase GPX3 in colitis-associated carcinoma[J]. Cancer Research, 73, 1245-1255(2013).
[35] Schieber M, Chandel N S. ROS function in redox signaling and oxidative stress[J]. Current Biology, 24, R453-R462(2014).
[36] Traverso N, Ricciarelli R, Nitti M et al. Role of glutathione in cancer progression and chemoresistance[J]. Oxidative Medicine and Cellular Longevity, 2013, 972913(2013).
[37] Irmak M B, Ince G, Ozturk M et al. Acquired tolerance of hepatocellular carcinoma cells to selenium deficiency: a selective survival mechanism?[J]. Cancer Research, 63, 6707-6715(2003).
[38] Raza A, Hayat U, Rasheed T et al. Redox-responsive nano-carriers as tumor-targeted drug delivery systems[J]. European Journal of Medicinal Chemistry, 157, 705-715(2018).
[39] Yang G L, Chen C, Zhu Y C et al. GSH-activatable NIR nanoplatform with mitochondria targeting for enhancing tumor-specific therapy[J]. ACS Applied Materials & Interfaces, 11, 44961-44969(2019).
[40] Cao J J, Zhang M S, Li X Q et al. A glutathione-responsive photosensitizer with fluorescence resonance energy transfer characteristics for imaging-guided targeting photodynamic therapy[J]. European Journal of Medicinal Chemistry, 193, 112203(2020).
[41] Li Y, Wang X H, Li Y Y et al. Drug-loaded platform based on metal-organic framework for photodynamic ablation of breast cancer cells[J]. Laser&Optoelectronics Progress, 58, 1417002(2021).
[42] Yang Y J, Zhang Y F, Wang R et al. A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy[J]. Chinese Chemical Letters, 33, 4583-4586(2022).
[43] Turan I S, Cakmak F P, Yildirim D C et al. Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action[J]. Chemistry, 20, 16088-16092(2014).
[44] Hu P, Xu G, Yang D C et al. An advanced multifunctional prodrug combining photodynamic therapy with chemotherapy for highly efficient and precise tumor ablation[J]. Dyes and Pigments, 205, 110500(2022).
[45] Ding K K, Zhang Y W, Si W L et al. Zinc(Ⅱ) metalated porphyrins as photothermogenic photosensitizers for cancer photodynamic/photothermal synergistic therapy[J]. ACS Applied Materials & Interfaces, 10, 238-247(2018).
[46] Huang K S, Xie S, Jiang L Z et al. A glutathione and hydrogen sulfide responsive photosensitizer for enhanced photodynamic therapy[J]. Dyes and Pigments, 205, 110529(2022).
[47] Wang R, Xia X, Yang Y J et al. A glutathione activatable photosensitizer for combined photodynamic and gas therapy under red light irradiation[J]. Advanced Healthcare Materials, 11, 2102017(2022).
[48] Zeng L L, Kuang S, Li G Y et al. A GSH-activatable ruthenium(Ⅱ)-azo photosensitizer for two-photon photodynamic therapy[J]. Chemical Communications, 53, 1977-1980(2017).
[49] Xu F, Li H D, Yao Q C et al. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy[J]. Chemical Science, 10, 10586-10594(2019).
[50] Liu Z W, Song F L, Shi W B et al. Nitroreductase-activatable theranostic molecules with high PDT efficiency under mild hypoxia based on a TADF fluorescein derivative[J]. ACS Applied Materials & Interfaces, 11, 15426-15435(2019).
[51] Chen H C, Bi Q R, Yao Y R et al. Dimeric BODIPY-loaded liposomes for dual hypoxia marker imaging and activatable photodynamic therapy against tumors[J]. Journal of Materials Chemistry B, 6, 4351-4359(2018).
[52] Li Z S, Liu Y, Chen L et al. A glutathione-activatable photodynamic and fluorescent imaging monochromatic photosensitizer[J]. Journal of Materials Chemistry B, 5, 4239-4245(2017).
[53] Hwang B, Kim T I, Kim H et al. Ubiquinone-BODIPY nanoparticles for tumor redox-responsive fluorescence imaging and photodynamic activity[J]. Journal of Materials Chemistry B, 9, 824-831(2021).
[54] Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 283, 65-87(2011).
[55] Hussain S M, Hess K L, Gearhart J M et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J]. Toxicology in Vitro, 19, 975-983(2005).
[56] Ke L B, Wei F M, Liao X X et al. Nano-assembly of ruthenium(Ⅱ) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy[J]. Nanoscale, 13, 7590-7599(2021).
[57] Ke L B, Wei F M, Xie L N et al. A biodegradable iridium(Ⅲ) coordination polymer for enhanced two-photon photodynamic therapy using an apoptosis-ferroptosis hybrid pathway[J]. Angewandte Chemie (International Ed. in English), 61, e202205429(2022).
[58] Zhu Y, Song N, Chen L et al. Reduction responsive BODIPY decorated mesoporous silica nanoscale platforms for photodynamic therapy[J]. Microporous and Mesoporous Materials, 311, 110689(2021).
[59] Li K, Dong W Y, Miao Y X et al. Dual-targeted 5-aminolevulinic acid derivatives with glutathione depletion function for enhanced photodynamic therapy[J]. Journal of Photochemistry and Photobiology B: Biology, 215, 112107(2021).
[60] Min H, Wang J, Qi Y Q et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy[J]. Advanced Materials, 31, 1808200(2019).
[61] Wan S S, Cheng Q, Zeng X et al. A Mn(Ⅲ)-sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics[J]. ACS Nano, 13, 6561-6571(2019).
[62] Wang B, Dai Y N, Kong Y J et al. Tumor microenvironment-responsive Fe(Ⅲ)-porphyrin nanotheranostics for tumor imaging and targeted chemodynamic-photodynamic therapy[J]. ACS Applied Materials & Interfaces, 12, 53634-53645(2020).
[63] Zhang X, Wang S L, Tang K et al. Cu2+ embedded three-dimensional covalent organic framework for multiple ROS-based cancer immunotherapy[J]. ACS Applied Materials & Interfaces, 14, 30618-30625(2022).
[64] Li X J, Liu Y H, Tian H Q. Current developments in Pt(Ⅳ) prodrugs conjugated with bioactive ligands[J]. Bioinorganic Chemistry and Applications, 2018, 8276139(2018).
Get Citation
Copy Citation Text
Kang Xu, Tian Zhang, Jinjun Shao, Xiaochen Dong. Progress of Glutathione-Responsive Photosensitizers for Tumor Therapy[J]. Chinese Journal of Lasers, 2023, 50(3): 0307202
Category: Optical Diagnostics and Therapy
Received: Aug. 15, 2022
Accepted: Sep. 28, 2022
Published Online: Feb. 6, 2023
The Author Email: Jinjun Shao (iamxcdong@njtech.edu.cn)