Laser & Optoelectronics Progress, Volume. 55, Issue 2, 021005(2018)

Deep Convolutional Neural Network Based on Two-Stream Convolutional Unit

Congcong Hou1、*, Yuqing He1, Xiaoheng Jiang1, and Jing Pan1
Author Affiliations
  • 1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • 1 School of Electronic Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
  • show less
    Figures & Tables(10)
    Extraction process of features containing information in channels (a) and across the channels (b)
    Simplified convolution
    Comparison of two-stream convolutional unit (a) and simplified convolutional unit (b)
    Features concat
    Diagram of two-stream convolutional unit (a) and simplified convolutional unit (b)
    Connection between convolutional units
    Architecture of CTsNet for CIFAR database
    • Table 1. Configurations of network parameters

      View table

      Table 1. Configurations of network parameters

      LayerLSNet[14]CTsNet
      13×3×3×1923×3×3×192
      23×3×1×1921×1×192×192(3×3×1×192),(1×1×192×192)1×1×(192×2)×192
      33×3×1×1921×1×192×192(3×3×1×192),(1×1×192×192)1×1×(192×2)×192
      43×3×1×1921×1×192×192(3×3×1×192),(1×1×192×192)1×1×(192×2)×192
      53×3×192×2563×3×192×192
      63×3×1×2561×1×256×256(3×3×1×192),(1×1×192×192)1×1×(192×2)×192
      73×3×1×2561×1×256×256(3×3×1×192),(1×1×192×192)1×1×(192×2)×192
      83×3×1×2561×1×256×256(3×3×1×192),(1×1×192×192)1×1×(192×2)×192
      93×3×256×2563×3×192×192
      103×3×256×2563×3×192×192
      111×1×256×101×1×192×10
    • Table 2. Comparison on parameters and classification error rate of CTsNet and LSNet

      View table

      Table 2. Comparison on parameters and classification error rate of CTsNet and LSNet

      MethodError /%Parameter /M
      LSNet[14]6.861.95
      CTsNet6.331.67
    • Table 3. Classification error rate of CIFAR10 and CIFAR100 with various networks%

      View table

      Table 3. Classification error rate of CIFAR10 and CIFAR100 with various networks%

      MethodCIFAR10CIFAR10+CIFAR100
      Maxout[18]11.689.3838.57
      NIN[13]10.418.8135.68
      NIN+LA[23]9.597.5134.40
      FitNet[21]-8.3935.04
      DSN[24]9.758.2234.57
      Highway[25]-7.5432.24
      ALL-CNN[19]9.087.2533.71
      RCNN-160[26]8.697.1031.75
      ResNet-110[12]-6.43-
      CSNet-M[20]8.156.3830.24
      CTsNet7.956.3330.12
    Tools

    Get Citation

    Copy Citation Text

    Congcong Hou, Yuqing He, Xiaoheng Jiang, Jing Pan. Deep Convolutional Neural Network Based on Two-Stream Convolutional Unit[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Aug. 2, 2017

    Accepted: --

    Published Online: Sep. 10, 2018

    The Author Email: Congcong Hou (houcc@tju.edu.cn)

    DOI:10.3788/LOP55.021005

    Topics