Piezoelectrics & Acoustooptics, Volume. 46, Issue 6, 916(2024)

Research on Influence of New Backing Material on the Bandwidth of Needle Hydrophone

YANG Jinfeng, ZHU Yunsong, LI Yinfeng, and WANG Yuebing
Author Affiliations
  • College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
  • show less
    References(23)

    [1] [1] FAN X, CAO Y, HA K, et al. Fabrication of a PMN-PZT needle hydrophone for photoacoustic imaging[J]. The Journal of the Acoustical Society of Korea,2016,35(3):175-182.

    [2] [2] LINAS S, ANDRIUS C, PAULIU K, et al. Ultrasonic needle hydrophone calibration in air by a parabolic off-axis mirror focused beam using three-transducer reciprocity[J]. Ultrasonics, 2023,133:107025.

    [3] [3] WU M, XIA L, WANG H, et al. Design, fabrication and testing of a high frequency broadband hydroacoustic transducer for sonar systems[J]. Results in Physics, 2023,52:106872.

    [4] [4] ZHANG R, JIANG B, CAO W. Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals[J]. Journal of Applied Physics,2001,90(7):3471-3475.

    [5] [5] YIN J, JIANG B, CAO W. Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3-0.45PbTiO3 single crystal with designed multidomains[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2000,47(1):285-291.

    [6] [6] LIU X, ZHANG S, LUO J, et al. Complete set of material constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal with morphotropic phase boundary composition[J]. Journal of Applied Physics,2009,106(7):074112.

    [7] [7] CHEN Y, LAM K, ZHOU D, et al. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications[J]. Sensors, 2014, 14(8): 13730-13758.

    [8] [8] WANG W, OR W S, LUO H, et al. Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric single-crystal rectangular beams: Mode-coupling effect and its application to ultrasonic array transducers[J]. Crystals,2017,7(4):101.

    [12] [12] LU Y, SONG G, WU B, et al. Fabrication of broadband poly (vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer[J]. Ultrasonics,2014,54(1):296-304.

    [13] [13] QIAO Y, GOU G, WU F, et al. Graphene-based thermoacoustic sound source[J]. ACS Nano,2020,14(4):3779-3804.

    [14] [14] BAI X, ZHAI Y, ZHANG Y. Green approach to prepare graphene-based composites with high microwave absorption capacity[J]. Journal of Physical Chemistry C,2011,115(23):11673-11677.

    [15] [15] El-TANTAWY F, AAL A N, El-DALY A A, et al. A new phantom model and attenuation backing from epoxy resin nanosized hydroxyapatite-carbon black and multifunctional agent composites[J]. Materials Letters, 2004,58(27/28):3388-3394.

    [16] [16] ZHANG X, WANG G, CAO W, et al. Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties[J]. RSC Advances, 2014, 4(38):19594-19601.

    [17] [17] QIU Y, LIU J, LU Y, et al. Hierarchical assembly of tungsten spheres and epoxy composites in three-dimensional graphene foam and its enhanced acoustic performance as a backing material[J]. ACS Appl. Mater. Interfaces, 2016, 8(28):18496-18504.

    [18] [18] QIU Y, LIU J, LU Y, et al. Graphene oxide-stimulated acoustic attenuating performance of tungsten based epoxy films[J]. Journal of Materials Chemistry C. Materials for Optical and Electronic Devices,2015,3(41):10848-10855.

    [19] [19] TANG Y, ZHANG G, MAO H, et al. Research on the sensor for detection of carburized case depth based on nonlinear ultrasound[J]. Results in Physics, 2022, 42:105984.

    [20] [20] HOTATE M, YOSHIDOME D, KOJIMA T, et al. Design and fabrication of acoustic matching layer for lead-free ultrasonic flowmeter[J]. Journal of the Ceramic Society of Japan,2015,123(1437):317-321.

    [22] [22] CHYAN Y, YE R, LI Y, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3):2176-2183.

    [23] [23] XUAN D, A K S, LOPEZ A G S, et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams[J]. Advanced Materials,2018,30(280):1707416.

    [24] [24] CASTILLO M, ACEVEDO P, MORENO E. KLM model for lossy piezoelectric transducers[J]. Ultrasonics,2003, 41(8):671-679.

    [25] [25] JOSE F, MARGO S. Acoustic energy harvesting of piezoelectric ceramic composites[J]. Energies, 2022, 15(10):3734-3734.

    [27] [27] KAR B, WALLRAB U. Performance enhancement of an ultrasonic power transfer system through a tightly coupled solid media using a KLM model[J]. Micromachines, 2020, 11(4): 355.

    [28] [28] SUN X, FEI C, CHEN Q, et al. Dy-doped BiFeO3-PbFeO3-based piezoelectric ceramics for nondestructive testing ultrasonic transducer applications[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(3):1839-1845.

    Tools

    Get Citation

    Copy Citation Text

    YANG Jinfeng, ZHU Yunsong, LI Yinfeng, WANG Yuebing. Research on Influence of New Backing Material on the Bandwidth of Needle Hydrophone[J]. Piezoelectrics & Acoustooptics, 2024, 46(6): 916

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 12, 2024

    Accepted: Feb. 13, 2025

    Published Online: Feb. 13, 2025

    The Author Email:

    DOI:10.11977/j.issn.1004-2474.2024.06.014

    Topics