Journal of Inorganic Materials, Volume. 39, Issue 12, 1339(2024)
[1] CHUNG I, LEE B, HE J et al. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 485, 486(2012).
[3] SNAITH H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells[J]. The Journal of Physical Chemistry Letters, 4, 3623(2013).
[5] LIANG Z, ZHANG Y, XU H et al. Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 624, 557(2023).
[6] LIAO W, ZHAO D, YU Y et al. Fabrication of efficient low bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide[J]. Journal of the American Chemical Society, 138, 12360(2016).
[7] HU S, OTSUKA K, MURDEY R et al. Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells[J]. Energy and Environmental Science, 15:, 2096(2022).
[8] LIN R, XU J, WEI M et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 603, 73(2022).
[10] ZHU L, YUH B, SCHOEN S et al. Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells[J]. Nanoscale, 8, 7621(2016).
[11] LIAN X, CHEN J, ZHANG Y et al. Highly efficient Sn/Pb binary perovskite solar cell
[12] ZHU T, YANG Y, GONG X. Recent advancements and challenges for low-toxicity perovskite materials[J]. ACS Applied Materials & Interfaces, 12, 26776(2020).
[13] YANG Z, RAJAGOPAL A, CHUEH C C et al. Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells[J]. Advanced Materials, 28, 8990(2016).
[14] SONG T B, YOKOYAMA T, STOUMPOS C C et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells[J]. Journal of the American Chemical Society, 139, 836(2017).
[16] LEE S J, SHIN S S, KIM Y C et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex[J]. Journal of the American Chemical Society, 138, 3974(2016).
[17] YU B B, XU L, LIAO M et al. Synergy effect of both 2, 2, 2-trifluoroethylamine hydrochloride and SnF2 for highly stable FASnI3-
[18] XIAO M, GU S, ZHU P et al. Tin-based perovskite with improved coverage and crystallinity through tin-fluoride-assisted heterogeneous nucleation[J]. Advanced Optical Materials, 6, 1700615(2018).
[19] WANG F, JIANG X, CHEN H et al. 2D-Quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability[J]. Joule, 2, 2732(2018).
[20] CAO D H, STOUMPOS C C, YOKOYAMA T et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)
[21] ZHAO Z, GU F, WANG C et al. Orientation regulation of photoactive layer in tin-based perovskite solar cells with allylammonium cations[J]. Solar RRL, 4, 2000315(2020).
[22] DAI X, ZHANG L, QIAN Y et al. Controlling vertical composition gradients in Sn-Pb mixed perovskite solar cells
[23] TAI Q, GUO X, TANG G et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells[J]. Angewandte Chemie International Edition, 58, 806(2019).
[24] LIN Z, LIU C, LIU G et al. Preparation of efficient inverted tin-based perovskite solar cells
[25] MENG X, WU T, LIU X et al. Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent[J]. The Journal of Physical Chemistry Letters, 11, 2965(2020).
[26] MENG X, WANG Y, LIN J et al. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells[J]. Joule, 4, 902(2020).
[27] MENG X, LIN J, LIU X et al. Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding[J]. Advanced Materials, 31, 1903721(2019).
[28] XU X, CHUEH C C, YANG Z et al. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells[J]. Nano Energy, 392(2017).
[29] TONG J H, SONG Z N, KIM H D et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells[J]. Science, 364, 475(2019).
[30] WANG J T, UDDIN M A, CHEN B et al. Enhancing photostability of Sn-Pb perovskite solar cells by an alkylammonium pseudo-halogen additive[J]. Advanced Energy Materials, 13, 2204115(2023).
[31] BING J, KIM J, ZHANG M et al. The impact of a dynamic two- step solution process on film formation of Cs0.15(MA0.7FA0.3)0.85PbI3 perovskite and solar cell performance[J]. Small, 15, 1804858(2019).
[32] WANG J, DATTA K, LI J et al. Understanding the film formation kinetics of sequential deposited narrow-bandgap Pb-Sn hybrid perovskite films[J]. Advanced Energy Materials, 10, 2000566(2020).
[33] LI S, ZHANG X, XUE X et al. Importance of tin (II) acetate additives in sequential deposited fabrication of Sn-Pb-based perovskite solar cells[J]. Journal of Alloys and Compounds, 164050(2022).
[34] OKU T. Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells[J]. Solar Cells-New Approaches and Reviews, 77(2015).
[35] BAHRAM A N, MOSSAIN M, JAKOBY M et al. Vacuum- assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells[J]. Advanced Energy Materials, 10, 1902583(2020).
[36] MA Y, ZHENG F, LI S et al. Regulating the crystallization growth of Sn-Pb mixed perovskites using the 2D perovskite (4-AMP) PbI4 substrate for high-efficiency and stable solar cells[J]. ACS Applied Materials & Interfaces, 15, 34862(2023).
[37] FEI C, LI B, ZHANG R et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film[J]. Advanced Energy Materials, 7, 1602017(2017).
[38] LI C, ZHANG N, GAO P[report]. Materials Chemistry Frontiers, 7, 3797(2023).
[40] SUN Y, YANG S, PANG Z et al. Preferred film orientation to achieve stable and efficient Sn-Pb binary perovskite solar cells[J]. ACS Applied Materials & Interfaces, 13, 10822(2021).
[41] ZHANG W, HUANG L, ZHENG W et al. Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells
[42] RAOUI Y, EZ-ZAHRAOUY H, KAZIM S et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: mechanistic insights[J]. Journal of Energy Chemistry, 822(2021).
[43] DUIJINSTEE E, BALL J, CONE V et al. Toward understanding space-charge limited current measurements on metal halide perovskites[J]. ACS Energy Letters, 5, 376(2020).
[44] BUBE R. Trap density determination by space-charge-limited currents[J]. Journal of Applied Physics, 33, 1733(1962).
[45] CAO J, LIU C K, PIRADI V et al. Ultrathin self-assembly two-dimensional metal-organic framework films as hole transport layers in ideal-bandgap perovskite solar cells[J]. ACS Energy Letters, 7, 3362(2022).
Get Citation
Copy Citation Text
Yu WANG, Hao XIONG, Xiaokun HUANG, Linqin JIANG, Bo WU, Jiansheng LI, Aijun YANG.
Category:
Received: Apr. 15, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Linqin JIANG (linqinjiang@fjjxu.edu.cn), Bo WU (wubo@fzu.edu.cn)