APPLIED LASER, Volume. 44, Issue 5, 68(2024)
Femtosecond Laser Dynamic Energy Heat Transfer Model and Ablation Law Study of Face Gear Materials Based on Electron Density Change Effect
[2] [2] LEI D C, TANG J Y. A numerical method for calculating time varying meshing stiffness of face gear transmission[J]. China Mechanical Engineering, 2014, 25(17): 2300-2304.
[6] [6] JIANG L, TSAI H L. Modeling of ultrashort laser pulse-train processing of metal thin films[J]. International Journal of Heat and Mass Transfer, 2007, 50(17/18): 3461-3470.
[8] [8] LIN Z B, ZHIGILEI L V, CELLI V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium[J]. Physical Review B, 2008, 77(7): 075133.
[9] [9] KIRAN K K, SAMUEL G L, SHUNMUGAM M S. Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 2019, 263: 266-275.
[10] [10] LI Y N, JI P F. Ab initio calculation of electron temperature dependent electron heat capacity and electron-phonon coupling factor of noble metals[J]. Computational Materials Science, 2022, 202: 110959.
[11] [11] AL-MALKAWI G H, HASSANEIN A. Impact of the electron-phonon coupling factor and electron heat capacity on the thermal response of targets irradiated by femtosecond laser[J]. Journal of Laser Applications, 2018, 30(4): 042004.1-042004.8.
[12] [12] WANG H, SHEN H, YAO Z Q. A two-step model for multiple picosecond and femtosecond pulses ablation of fused silica[J]. Journal of Manufacturing Science and Engineering, 2019, 141(6): 061004.
[13] [13] RETHFELD B, SOKOLOWSKI-TINTEN K, VON DER LINDE D, et al. Timescales in the response of materials to femtosecond laser excitation[J]. Applied Physics A, 2004, 79(4): 767-769.
[14] [14] RETHFELD B, KAISER A, VICANEK M, et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation[J]. Physical Review B, 2002, 65(21): 214303.
[15] [15] LEITZ K H, REDLINGSHFER B, REG Y, et al. Metal ablation with short and ultrashort laser pulses[J]. Physics Procedia, 2011, 12: 230-238.
[16] [16] GAO J D, ZHANG J L, QUAN Z J, et al. Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection[J]. Chinese Physics B, 2020, 29(4): 047802.
[19] [19] LIN Z B, ZHIGILEI L V. Temperature dependences of the electron-phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation[J]. Applied Surface Science, 2007, 253(15): 6295-6300.
[20] [20] TSUCHIYA T, KAWAMURA K. First-principles electronic thermal pressure of metal Au and Pt[J]. Physical Review B, 2002, 66(9): 094115.
[25] [25] WANG S Y, REN Y, CHENG C W, et al. Micromachining of copper by femtosecond laser pulses[J]. Applied Surface Science, 2013, 265: 302-308.
[26] [26] CHENG C W, WANG S, CHANG K P, et al. Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison[J]. Applied Surface Science, 2016, 361: 41-48.
[27] [27] JI P F, ZHANG Y W. Multiscale modeling of femtosecond laser irradiation on a copper film with electron thermal conductivity from ab initio calculation[J]. Numerical Heat Transfer, Part A: Applications, 2017, 71(2): 128-136.
Get Citation
Copy Citation Text
Wu Tao, Ming Xingzu, Xiong Liangcai, Li Wan, Liu Haiyu. Femtosecond Laser Dynamic Energy Heat Transfer Model and Ablation Law Study of Face Gear Materials Based on Electron Density Change Effect[J]. APPLIED LASER, 2024, 44(5): 68
Category:
Received: Apr. 17, 2023
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: Wan Li (398459729@qq.com)