Acta Optica Sinica, Volume. 44, Issue 16, 1610002(2024)
Childhood Pneumonia CT Image Segmentation Network with Prior Graph Convolution and Transformer Fusion
Fig. 7. Visualization results of the prior graph adjacency matrix. (a) Prior graph adjacency matrix without PGL module; (b) prior graph adjacency matrix with PGL module; (c) ideal prior graph
Fig. 8. Hyperparametric confusion matrices on the Child-P dataset. (a) JI; (b) SE; (c) MCC; (d) ASD
Fig. 9. Segmentation results (up) and their confidence maps (down) on the Child-P, COVID, and MosMed datasets. (a) Label; (b) GTU-Net; (c) U-Net; (d) U-Net++; (e) TMU-Net; (f) TransDeepLab; (g) CSU-Net
Fig. 10. Local segmentation results and their heatmaps. (a) Original samples; (b) local labels; (c) GTU-Net; (d) U-Net; (e) TransDeepLab; (f) CSU-Net
Fig. 11. Performance comparison of each Transformer network before and after pre-training weight loading on the COVID dataset
|
|
|
|
|
Get Citation
Copy Citation Text
Haocheng Liang, Lü Jia, Mingkai Yu, Xin Chen. Childhood Pneumonia CT Image Segmentation Network with Prior Graph Convolution and Transformer Fusion[J]. Acta Optica Sinica, 2024, 44(16): 1610002
Category: Image Processing
Received: Mar. 27, 2024
Accepted: May. 6, 2024
Published Online: Aug. 5, 2024
The Author Email: Jia Lü (lvjia@cqnu.edu.cn), Chen Xin (b2309@126.com)
CSTR:32393.14.AOS240772