Acta Optica Sinica, Volume. 44, Issue 16, 1610002(2024)

Childhood Pneumonia CT Image Segmentation Network with Prior Graph Convolution and Transformer Fusion

Haocheng Liang1, Lü Jia1,2、*, Mingkai Yu1, and Xin Chen3、**
Author Affiliations
  • 1College of Computer and Information Sciences, Chongqing Normal University, Chongqing 401331, China
  • 2National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing 401331, China
  • 3Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
  • show less
    Figures & Tables(17)
    Structure of the GTU-Net
    Structure of CAM
    Process of prior graph learning
    Illustration of the ViT block
    Childhood pneumonia CT dateset
    Ablation results inside PGL module on the Child-P dataset
    Visualization results of the prior graph adjacency matrix. (a) Prior graph adjacency matrix without PGL module; (b) prior graph adjacency matrix with PGL module; (c) ideal prior graph
    Hyperparametric confusion matrices on the Child-P dataset. (a) JI; (b) SE; (c) MCC; (d) ASD
    Segmentation results (up) and their confidence maps (down) on the Child-P, COVID, and MosMed datasets. (a) Label; (b) GTU-Net; (c) U-Net; (d) U-Net++; (e) TMU-Net; (f) TransDeepLab; (g) CSU-Net
    Local segmentation results and their heatmaps. (a) Original samples; (b) local labels; (c) GTU-Net; (d) U-Net; (e) TransDeepLab; (f) CSU-Net
    Performance comparison of each Transformer network before and after pre-training weight loading on the COVID dataset
    Comparison of computational complexity on the Child-P dataset
    • Table 1. Evaluation metrics

      View table

      Table 1. Evaluation metrics

      MetricsDescription
      DSC /%2|GĜ|/|G|+|Ĝ|
      JI /%|GĜ|/|GĜ|
      SE /%PT/(PT+NF)
      MCC /%PTNT-PFNF/PT+PFPT+NFNT+PFNT+NF1/2
      ASD /pixelxB(G)dx,BĜ+yB(Ĝ)dy,BG/BG+BĜ
    • Table 2. Ablation results of GTU-Net’s modules on the Child-P dataset

      View table

      Table 2. Ablation results of GTU-Net’s modules on the Child-P dataset

      Baseline:

      U-Net (32)

      CAPGCTDSC /%(↑)JI /%(↑)SE /%(↑)MCC /%(↑)ASD /pixel(↓)
      PriorGCNViT
      0.83680.71940.79310.83560.4828
      0.87590.77930.84970.87440.4553
      0.88120.78760.85620.87970.3213
      0.87510.77800.85250.87340.4139
      0.88580.79510.87140.88410.3508
      0.88610.79550.86070.88470.2932
      0.88030.78630.87310.87840.4520
      0.89230.80550.88270.89060.3250
    • Table 3. Ablation results of PriorGCN replacement (repl.)

      View table

      Table 3. Ablation results of PriorGCN replacement (repl.)

      ModuleDSC /%JI /%SE /%MCC /%ASD /pixel
      PriorGCN0.89230.80550.88270.89060.3250
      repl. GCN moduleGloRe170.88400.79210.86870.88230.3705
      DualGCN190.88430.79260.87560.88250.4322
      GCR200.88420.79250.87550.88240.4196
      SpyGCN210.88490.79350.87400.88310.4106
      repl. Attention moduleSE290.86960.76930.83940.86810.4212
      CBAM300.88420.79240.88000.88230.4720
      SA250.88110.78750.86350.87940.3940
      Non-local310.88490.79360.87240.88310.3810
    • Table 4. Comparison of metrics on the Child-P dataset of GTU-Net

      View table

      Table 4. Comparison of metrics on the Child-P dataset of GTU-Net

      NetworkDSC /%JI /%SE /%MCC /%ASD /pixel
      U-Net[4]0.81240.68410.73940.81380.3518
      ResU-Net[32]0.78480.64580.71380.78560.6034
      U-Net++[33]0.83260.71330.77640.83240.4418
      TMU-Net[34]0.79670.66210.73770.79630.6594
      Swin-Unet[12]0.83700.71970.82080.83450.6686
      SMESwin-Unet[13]0.81120.68230.79090.80850.8807
      TransDeepLab[14]0.85740.75030.84420.85520.5733
      CSU-Net[35]0.87410.77640.86940.87210.5079
      GTU-Net0.89230.80550.88270.89060.3250
    • Table 5. Comparison of metrics on the COVID and MosMed datasets of GTU-Net

      View table

      Table 5. Comparison of metrics on the COVID and MosMed datasets of GTU-Net

      NetworkMetrics on the COVIDMetrics on the MosMed
      DSC /%JI /%SE /%MCC /%ASD /pixelDSC /%JI /%SE /%MCC /%ASD /pixel
      U-Net0.77320.63030.70830.76110.28040.69710.53510.58420.70860.3843
      ResU-Net0.78570.64710.72730.77350.26600.68840.52490.57480.70030.3911
      U-Net++0.80040.66720.74590.78870.26480.71070.55120.61990.71640.4837
      TMU-Net0.78920.65180.72750.77760.24030.69510.53270.59590.70290.6031
      Swin-Unet0.76150.61490.70660.74720.38390.64240.47310.55850.64731.2751
      SMESwin-Unet0.68220.51770.69080.65740.92430.62330.45280.54890.62641.3313
      TransDeepLab0.78170.64170.72690.76880.35740.72730.57150.68570.72650.8403
      CSU-Net0.75320.60400.71380.73650.41260.67120.50520.57360.67900.7945
      GTU-Net0.81740.69130.78620.80470.28440.74150.58920.65760.74580.4505
    Tools

    Get Citation

    Copy Citation Text

    Haocheng Liang, Lü Jia, Mingkai Yu, Xin Chen. Childhood Pneumonia CT Image Segmentation Network with Prior Graph Convolution and Transformer Fusion[J]. Acta Optica Sinica, 2024, 44(16): 1610002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 27, 2024

    Accepted: May. 6, 2024

    Published Online: Aug. 5, 2024

    The Author Email: Jia Lü (lvjia@cqnu.edu.cn), Chen Xin (b2309@126.com)

    DOI:10.3788/AOS240772

    CSTR:32393.14.AOS240772

    Topics