Transactions of Atmospheric Sciences, Volume. 48, Issue 4, 686(2025)

Numerical simulation and diagnostic analysis of a squall line wind event in Nantong, China

LI Changxin1,2,3,4, XU Dongmei1,2, LI Hong5, LIU Deqiang2, FEI Haiyan6, SUN Qilong7, WANG Yi8, and SHEN Feifei1,2
Author Affiliations
  • 1Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 2Fujian Key Laboratory of Severe Weather/Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou 350007, China
  • 3State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China
  • 6China Meteorological Administration Training Centre, Beijing 100081, China
  • 7Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • 8Jiangsu Meteorological Observatory, Nanjing 210008, China
  • show less
    References(18)

    [1] [1] Bluestein H B, Jain M H, 1985. Formation of mesoscale lines of pirecipitation: severe squall lines in Oklahoma during the spring[J]. J Atmos Sci, 42(16): 1711-1732. DOI: 10.1175/1520-0469(1985)0422.0.co;2.

    [2] [2] Bryan G H, Morrison H, 2012. Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics[J]. Mon Wea Rev, 140(1): 202-225. DOI: 10.1175/mwr-d-11-00046.1.

    [4] [4] Chen S H, Sun W Y, 2002. A one-dimensional time dependent cloud model[J]. J Meteor Soc Japan, 80(1): 99-118. DOI: 10.2151/jmsj.80.99.

    [5] [5] Chen Z Y, Zhao P G, Xiao H, et al., 2025. Effect of cloud microphysical processes on surface wind of a squall line in South China[J]. Atmos Res, 315: 107828. DOI: 10.1016/j.atmosres.2024.107828.

    [7] [7] Gallus W A, Snook N A, Johnson E V, 2008. Spring and summer severe weather reports over the midwest as a function of convective mode: a preliminary study[J]. Wea Forecasting, 23(1): 101. DOI: 10.1175/2007WAF2006120.1.

    [10] [10] Hart R E, Grumm R H, 2001. Using normalized climatological anomalies to rank synoptic-scale events objectively[J]. Mon Wea Rev, 129(9): 2426. DOI: 10.1175/1520-0493(2001)1292426:UNCATR>2.0.CO;2.

    [11] [11] Hong S Y, Lim K S, Lee Y H, et al., 2010. Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection[J]. Adv Meteor, 2010(1): 707253. DOI: 10.1155/2010/707253.

    [12] [12] Hong S Y, Lim J, 2022. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. Asia-Pac J Atmos Sci, 42(2): 129-151.

    [13] [13] Johnson R H, Hamilton P J, 1988. The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line[J]. Mon Wea Rev, 116(7): 1444-1473. DOI: 10.1175/1520-0493(1988)1162.0.co;2.

    [17] [17] Liu L, Ran L K, Sun X G, 2015. Analysis of the structure and propagation of a simulated squall line on 14 June 2009[J]. Adv Atmos Sci, 32(8): 1049-1062. DOI: 10.1007/s00376-014-4100-9.

    [21] [21] Meng Z Y, Yan D C, Zhang Y J, 2013. General features of squall lines in East China[J]. Mon Wea Rev, 141(5): 1629-1647. DOI: 10.1175/MWR-D-12-00208.1.

    [22] [22] Morrison H, Gettelman A, 2008. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). part I: description and numerical tests[J]. J Climate, 21(15): 3642-3659. DOI: 10.1175/2008jcli2105.1.

    [23] [23] Morrison H, Thompson G, Tatarskii V, 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes[J]. Mon Wea Rev, 137(3): 991-1007. DOI: 10.1175/2008mwr2556.1.

    [26] [26] Rotunno R, Klemp J B, Weisman M L, 1988. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 45(3): 463-485. DOI: 10.1175/1520-0469(1988)0450463:ATFSLL>2.0.CO;2.

    [27] [27] Schmidt J M, Cotton W R, 1989. A high plains squall line associated with severe surface winds[J]. J Atmos Sci, 46(3): 281-302. DOI: 10.1175/1520-0469(1989)0462.0.co;2.

    [31] [31] Sun Y T, Zhou Z M, Gao Q J, et al., 2023. Evaluating simulated microphysics of stratiform and convective precipitation in a squall line event using polarimetric radar observations[J]. Remote Sens, 15(6): 1507. DOI: 10.3390/rs15061507.

    [35] [35] Wu D, Ma L, Hu T T, et al., 2023. Impacts of microphysical parameterizations on banded convective system in convection-permitting simulation: a case study[J]. Front Earth Sci, 11: 1149518. DOI: 10.3389/feart.2023.1149518.

    [39] [39] Zhang D L, Gao K, Parsons D B, 1989. Numerical simulation of an intense squall line during 10—11 June 1985 PRE-STORM. Part Ⅰ: model verification[J]. Mon Wea Rev, 117(5): 960-994. DOI: 10.1175/1520-0493(1989)1172.0.co;2.

    Tools

    Get Citation

    Copy Citation Text

    LI Changxin, XU Dongmei, LI Hong, LIU Deqiang, FEI Haiyan, SUN Qilong, WANG Yi, SHEN Feifei. Numerical simulation and diagnostic analysis of a squall line wind event in Nantong, China[J]. Transactions of Atmospheric Sciences, 2025, 48(4): 686

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 28, 2024

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email:

    DOI:10.13878/j.cnki.dqkxxb.20240828001

    Topics