International Journal of Extreme Manufacturing, Volume. 7, Issue 2, 22013(2025)

Stimuli-responsive actuators in water environment: a review and future research agenda

Zhao Xin, Tang Gangqiang, Mei Dong, Zhao Chun, Li Lijie, and Wang Yanjie
References(338)

[1] [1] El-Atab N, Mishra R B, Al-Modaf F, Joharji L, Alsharif A A, Alamoudi H, Diaz M, Qaiser N and Hussain M M 2020 Soft actuators for soft robotic applications: a reviewAdv. Intell. Syst.22000128

[2] [2] Shintake J, Cacucciolo V, Floreano D and Shea H 2018 Soft robotic grippersAdv. Mater.301707035

[3] [3] Field R D, Anandakumaran P N and Sia S K 2019 Soft medical microrobots: design components and system integrationAppl. Phys. Rev.6041305

[4] [4] Walker J, Zidek T, Harbel C, Yoon S, Strickland F S, Kumar S and Shin M 2020 Soft robotics: a review of recent developments of pneumatic soft actuatorsActuators93

[5] [5] Yap H K, Ng H Y and Yeow C H 2016 High-force soft printable pneumatics for soft robotic applicationsSoft Robot.3144–58

[6] [6] Yan D, Wang Z F and Zhang Z J 2022 Stimuli-responsive crystalline smart materials: from rational design and fabrication to applicationsAcc. Chem. Res.551047–58

[7] [7] Kim Y and Zhao X H 2022 Magnetic soft materials and robotsChem. Rev.1225317–64

[8] [8] Chen Y F, Zhao H C, Mao J, Chirarattananon P, Helbling E F, Hyun N S P, Clarke D R and Wood R J 2019 Controlled flight of a microrobot powered by soft artificial musclesNature575324–9

[9] [9] Wang Y C, Wang Y Z, Shu J C, Cao W Q, Li C S and Cao M S 2023 Graphene implanted shape memory polymers with dielectric gene dominated highly efficient microwave driveAdv. Funct. Mater.332303560

[10] [10] Liu Y Q, Chen Z D, Han D D, Mao J W, Ma J N, Zhang Y L and Sun H B 2021 Bioinspired soft robots based on the moisture-responsive graphene oxideAdv. Sci.82002464

[11] [11] Gelebart A H, Mulder D J, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B and Broer D J 2017 Making waves in a photoactive polymer filmNature546632–6

[12] [12] He Q G, Wang Z J, Wang Y, Minori A, Tolley M T and Cai S Q 2019 Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuationSci. Adv.5eaax5746

[13] [13] Chen S W, Fan S C, Chan H, Qiao Z, Qi J M, Wu Z X, Yeo J C and Lim C T 2024 Liquid metal functionalization innovations in wearables and soft robotics for smart healthcare applicationsAdv. Funct. Mater.342309989

[14] [14] Li W J, Guan Q W, Li M, Saiz E and Hou X 2023 Nature-inspired strategies for the synthesis of hydrogel actuators and their applicationsProg. Polym. Sci.140101665

[15] [15] Guo Y G, Liu L W, Liu Y J and Leng J S 2021 Review of dielectric elastomer actuators and their applications in soft robotsAdv. Intell. Syst.32000282

[16] [16] Mirvakili S M and Hunter I W 2018 Artificial muscles: mechanisms, applications, and challengesAdv. Mater.301704407

[17] [17] Chen M, Gao M, Bai L C, Zheng H, Qi H J and Zhou K 2023 Recent advances in 4D printing of liquid crystal elastomersAdv. Mater.352209566

[18] [18] Ryan K R, Down M P and Banks C E 2021 Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applicationsChem. Eng. J.403126162

[19] [19] He Q G, Wang Z J, Wang Y, Wang Z J, Li C H, Annapooranan R, Zeng J, Chen R K and Cai S Q 2021 Electrospun liquid crystal elastomer microfiber actuatorSci. Robot.6eabi9704

[20] [20] Kularatne R S, Kim H, Boothby J M and Ware T H 2017 Liquid crystal elastomer actuators: synthesis, alignment, and applicationsJ. Polym. Sci.B55395–411

[21] [21] Chen Y Ret al2023 Bioinspired hydrogel actuator for soft robotics: opportunity and challengesNano Today49101764

[22] [22] Li C, Wang K B, Li J Z and Zhang Q C 2020 Recent progress in stimulus-responsive two-dimensional metal-organic frameworksACS Mater. Lett.2779–97

[23] [23] Deng H, Lin L, Ji M Z, Zhang S M, Yang M B and Fu Q 2014 Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materialsProg. Polym. Sci.39627–55

[24] [24] Liu Z W, Liu Y D, Shi Q S and Liang Y R 2021 Electroactive dielectric polymer gels as new-generation soft actuators: a reviewJ. Mater. Sci.5614943–63

[25] [25] Zhang L H, Yan H, Zhou J J, Zhao Z G, Huang J, Chen L, Ru Y F and Liu M J 2023 High-performance organohydrogel artificial muscle with compartmentalized anisotropic actuation under microdomain confinementAdv. Mater.35e2202193

[26] [26] Hauser A W, Evans A A, Na J H and Hayward R C 2015 Photothermally reprogrammable buckling of nanocomposite gel sheetsAngew. Chem., Int. Ed.545434–7

[27] [27] Wang J R, Wang J F, Chen Z, Fang S L, Zhu Y, Baughman R H and Jiang L 2017 Tunable, fast, robust hydrogel actuators based on evaporation-programmed heterogeneous structuresChem. Mater.299793–801

[28] [28] Luo R C, Wu J, Dinh N D and Chen C H 2015 Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotionAdv. Funct. Mater.257272–9

[29] [29] Liu T, Wang F F, Wu Q, Chen T H and Sun P C 2021 Fluorescent, electrically responsive and ultratough self-healing hydrogels via bioinspired all-in-one hierarchical micellesMater. Horiz.83096–104

[30] [30] Bi Y H, Du X X, He P P, Wang C Y, Liu C and Guo W W 2020 Smart bilayer polyacrylamide/DNA hybrid hydrogel film actuators exhibiting programmable responsive and reversible macroscopic shape deformationsSmall16e1906998

[31] [31] Baughman R Het al1999 Carbon nanotube actuatorsScience2841340–4

[32] [32] Eslamian M, Mirab F, Raghunathan V K, Majd S and Abidian M R 2021 Organic semiconductor nanotubes for electrochemical devicesAdv. Funct. Mater.312105358

[33] [33] Tang G Q, Mei D, Zhao X, Zhao C, Li L J and Wang Y J 2023 A comprehensive survey of ionic polymer metal composite transducers: preparation, performance optimization and applicationsSoft Sci.39

[34] [34] Zhang H, Lin Z H, Hu Y, Ma S Q, Liang Y H, Ren L and Ren L Q 2023 Low-voltage driven ionic polymer-metal composite actuators: structures, materials, and applicationsAdv. Sci.102206135

[35] [35] Yang L, Yang Y N and Wang H 2023 Modeling and control of ionic polymer metal composite actuators: a reviewEur. Polym. J.186111821

[36] [36] Park M, Kim J, Song H, Kim S and Jeon M 2018 Fast and stable ionic electroactive polymer actuators with PEDOT: PSS/(graphene-Ag-nanowires) nanocomposite electrodesSensors183126

[37] [37] Zhao C, Tang G Q, Ji Y J, Zhao X, Mei D, Li L J and Wang Y J 2023 High-performance ionic polymer actuators with triple-layered multifunctional electrodesMater. Des.229111882

[38] [38] Wu G, Wu X J, Xu Y J, Cheng H Y, Meng J K, Yu Q, Shi X Y, Zhang K, Chen W and Chen S 2019 High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applicationsAdv. Mater.311806492

[39] [39] Mahato M, Garai M, Nguyen V H, Oh S, Nam S, Zeng X R, Yoo H, Tabassian R and Oh I K 2023 Polysulfonated covalent organic framework as active electrode host for mobile cation guests in electrochemical soft actuatorSci. Adv.9eadk9752

[40] [40] Wu C H, Meng W J and Yoshio M 2022 Low-voltage-driven actuators using photo-cross-linked ionic columnar liquid-crystalline polymer filmsACS Mater. Lett.4153–8

[41] [41] Ren Met al2021 Strong and robust electrochemical artificial muscles by ionic-liquid-in-nanofiber-sheathed carbon nanotube yarnsSmall172006181

[42] [42] Mojtabavi M, Tsai W Y, VahidMohammadi A, Zhang T, Gogotsi Y, Balke N and Wanunu M 2022 Ionically active MXene nanopore actuatorsSmall182105857

[43] [43] He J, Chen Z Q, Xiao Y H, Cao X N, Mao J, Zhao J J, Gao X, Li T F and Luo Y W 2022 Intrinsically anisotropic dielectric elastomer fiber actuatorsACS Mater. Lett.4472–9

[44] [44] Ling Y, Pang W B, Liu J X, Page M, Xu Y D, Zhao G G, Stalla D, Xie J W, Zhang Y H and Yan Z 2022 Bioinspired elastomer composites with programmed mechanical and electrical anisotropiesNat. Commun.13524

[45] [45] Li Q Z, He Y J, Tan S B, Zhu B F, Zhang X and Zhang Z C 2022 Dielectric elastomer with excellent electromechanical performance by dipole manipulation of poly (vinyl chloride) for artificial muscles under low driving voltage applicationChem. Eng. J.441136000

[46] [46] Xiao Y H, Song Y L, Cao X N, Chen Z Q, Lu X D, Mao J, Rao Q Q, Fu S Y, Li T F and Luo Y W 2022 Spatially modulus-patterned dielectric elastomer actuators with oriented electroactuationChem. Eng. J.449137734

[47] [47] Rosset S and Shea H R 2013 Flexible and stretchable electrodes for dielectric elastomer actuatorsAppl. Phys.A110281–307

[48] [48] Shintake J, Rosset S, Schubert B, Floreano D and Shea H 2016 Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuatorsAdv. Mater.28231–8

[49] [49] Ji X B, Liu X C, Cacucciolo V, Imboden M, Civet Y, El Haitami A, Cantin S, Perriard Y and Shea H 2019 An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuatorsSci. Robot.4eaaz6451

[50] [50] Li W B, Zhang W M, Gao Q H, Guo Q W, Wu S, Zou H X, Peng Z K and Meng G 2021 Electrically activated soft robots: speed up by rollingSoft Robot.8611–24

[51] [51] Lau G K, Lim H T, Teo J Y and Chin Y W 2014 Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappersSmart Mater. Struct.23025021

[52] [52] Duduta M, Hajiesmaili E, Zhao H C, Wood R J and Clarke D R 2019 Realizing the potential of dielectric elastomer artificial musclesProc. Natl Acad. Sci. USA1162476–81

[53] [53] Zhang C C, Jin B J, Cao X N, Chen Z Q, Miao W S, Yang X X, Luo Y W, Li T F and Xie T 2022 Dielectric polymer with designable large motion under low electric fieldAdv. Mater.342206393

[54] [54] Watanabe M, Wakimoto N, Shirai H and Hirai T 2003 Bending electrostriction and space-charge distribution in polyurethane filmsJ. Appl. Phys.942494–7

[55] [55] Wang H Q, York P, Chen Y F, Russo S, Ranzani T, Walsh C and Wood R J 2021 Biologically inspired electrostatic artificial muscles for insect-sized robotsInt. J. Robot. Res.40895–922

[56] [56] Kang J Y, Zhang X W, Yang X Y, Yang X H, Wang S T and Song W L 2023 Mucosa-inspired electro-responsive lubricating supramolecular-covalent hydrogelAdv. Mater.352307705

[57] [57] Shin Y, Choi M Y, Choi J, Na J H and Kim S Y 2021 Design of an electro-stimulated hydrogel actuator system with fast flexible folding deformation under a low electric fieldACS Appl. Mater. Interfaces1315633–46

[58] [58] Hamedi M M, Campbell V E, Rothemund P, Gder F, Christodouleas D C, Bloch J F and Whitesides G M 2016 Electrically activated paper actuatorsAdv. Funct. Mater.262446–53

[59] [59] Zhang C C, Chen G C, Zhang K H, Jin B J, Zhao Q and Xie T 2024 Repeatedly programmable liquid crystal dielectric elastomer with multimodal actuationAdv. Mater.362313078

[60] [60] Zhang Y L, Li J C, Zhou H, Liu Y Q, Han D D and Sun H B 2021 Electro-responsive actuators based on grapheneInnovation2100168

[61] [61] Liang Y D, Huang D Y, Zhou X F, Wang Z Q, Shi Q, Hong Y Y, Pu H Y, Zhang M Y, Wu J B and Wen W J 2023 Efficient electrorheological technology for materials, energy, and mechanical engineering: from mechanisms to applicationsEngineering24151–71

[62] [62] Wang Xet al2020 Untethered and ultrafast soft-bodied robotsCommun. Mater.167

[63] [63] Singh R P and Onck P R 2018 Magnetic field induced deformation and buckling of slender bodiesInt. J. Solids Struct.14329–58

[64] [64] Wang B C, Kari L, Pang H M and Gong X L 2024 Modelling the dynamic magnetic actuation of isotropic soft magnetorheological elastomersInt. J. Mech. Sci.266108908

[65] [65] Seo Y 2023 Non-settling super-strong magnetorheological fluidsSmall19e2300320

[66] [66] Kong F X, Zhao J, Cai H G and Zhu Y H 2024 Design and implementation of a ferrofluid-based liquid robot for small-scale manipulationIEEE Robot. Autom. Lett.93060–7

[67] [67] Abbott J J, Peyer K E, Lagomarsino M C, Zhang L, Dong L X, Kaliakatsos I K and Nelson B J 2009 How should microrobots swim?Int. J. Robot. Res.281434–47

[68] [68] Jia Y L, Zhu Z Y, Jing X, Lin J Q and Lu M M 2023 Fabrication and performance evaluation of magnetically driven double curved conical ribbon micro-helical robotMater. Des.226111651

[69] [69] Joyee E B and Pan Y Y 2019 A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuationSoft Robot.6333–45

[70] [70] Xu C Y, Yang Z L and Lum G Z 2021 Small-scale magnetic actuators with optimal six degrees-of-freedomAdv. Mater.332100170

[71] [71] Venkiteswaran V K, Samaniego L F P, Sikorski J and Misra S 2019 Bio-inspired terrestrial motion of magnetic soft millirobotsIEEE Robot. Autom. Lett.41753–9

[72] [72] Cao X F, Xuan S H, Sun S S, Xu Z B, Li J and Gong X L 2021 3D printing magnetic actuators for biomimetic applicationsACS Appl. Mater. Interfaces1330127–36

[73] [73] Kadiri V M, Bussi C, Holle A W, Son K, Kwon H, Schtz G, Gutierrez M G and Fischer P 2020 Biocompatible magnetic micro-and nanodevices: fabrication of FePt nanopropellers and cell transfectionAdv. Mater.322001114

[74] [74] Lin D Z, Yang F, Gong D, Lin Z H, Li R H, Qian W B, Li C H, Jia S and Chen H W 2021 Magnetoactive soft drivers with radial-chain iron microparticlesACS Appl. Mater. Interfaces1334935–41

[75] [75] Ze Q J, Wu S, Nishikawa J, Dai J Z, Sun Y, Leanza S, Zemelka C, Novelino L S, Paulino G H and Zhao R R 2022 Soft robotic origami crawlerSci. Adv.8eabm7834

[76] [76] Duhr P, Meier Y A, Damanpack A, Carpenter J, Studart A R, Rafsanjani A and Demirrs A F 2023 Kirigami makes a soft magnetic sheet crawlAdv. Sci.102301895

[77] [77] Lee Yet al2023 Magnetically actuated fiber-based soft robotsAdv. Mater.352301916

[78] [78] Lum G Z, Ye Z, Dong X G, Marvi H, Erin O, Hu W Q and Sitti M 2016 Shape-programmable magnetic soft matterProc. Natl Acad. Sci. USA113E6007–E15

[79] [79] Deng H, Sattari K, Xie Y C, Liao P, Yan Z and Lin J 2020 Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shapingNat. Commun.116325

[80] [80] Zhang J C, Ren Z Y, Hu W Q, Soon R H, Yasa I C, Liu Z M and Sitti M 2021 Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assemblySci. Robot.6eabf0112

[81] [81] Liu Y, Huang J, Liu C, Song Z Y, Wu J D, Zhao Q L, Li Y T, Dong F P, Wang L and Xu H F 2024 Soft millirobot capable of switching motion modes on the fly for targeted drug delivery in the oviductACS Nano188694–705

[82] [82] Wu Y H, Zhang S, Yang Y, Li Z, Wei Y and Ji Y 2022 Locally controllable magnetic soft actuators with reprogrammable contraction-derived motionsSci. Adv.8eabo6021

[83] [83] Ube T, Kawasaki K and Ikeda T 2016 Photomobile liquid-crystalline elastomers with rearrangeable networksAdv. Mater.288212–7

[84] [84] Rehor I, Maslen C, Moerman P G, Van Ravensteijn B G P, Van Alst R, Groenewold J, Eral H B and Kegel W K 2021 Photoresponsive hydrogel microcrawlers exploit friction hysteresis to crawl by reciprocal actuationSoft Robot.810–18

[85] [85] Stoychev G, Kirillova A and Ionov L 2019 Light-responsive shape-changing polymersAdv. Opt. Mater.71900067

[86] [86] Pang X L, Lv J A, Zhu C Y, Qin L and Yu Y L 2019 Photodeformable azobenzene-containing liquid crystal polymers and soft actuatorsAdv. Mater.311904224

[87] [87] Yu C-Yet al2021 Azobenzene based photo-responsive mechanical actuator fabricated by intermolecular H-bond interactionChin. J. Polym. Sci.39417–24

[88] [88] Huang C L, Lv J A, Tian X J, Wang Y C, Yu Y L and Liu J 2015 Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signalsSci. Rep.517414

[89] [89] Song C J, Zhang Y H, Bao J Y, Wang Z Z, Zhang L Y, Sun J, Lan R C, Yu Z, Zhu S Q and Yang H 2023 Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane networkAdv. Funct. Mater.332213771

[90] [90] Chen Y H, Yang J J, Zhang X, Feng Y Y, Zeng H, Wang L and Feng W 2021 Light-driven bimorph soft actuators: design, fabrication, and propertiesMater. Horiz.8728–57

[91] [91] Bhatti M R A, Bilotti E, Zhang H, Varghese S, Verpaalen R C P, Schenning A P H J, Bastiaansen C W M and Peijs T 2020 Ultra-high actuation stress polymer actuators as light-driven artificial musclesACS Appl. Mater. Interfaces1233210–8

[92] [92] Gao Y Y, Han B, Zhao W Y, Ma Z C, Yu Y S and Sun H B 2019 Light-responsive actuators based on grapheneFront. Chem.7506

[93] [93] Li B W, Zhang Y Q, Li T F, Yu H P, Guo Q Q, Hu M J and Yang J 2022 Multilayer graphene/PDMS composite gradient materials for high-efficiency photoresponse actuatorsMacromol. Mater. Eng.3072100868

[94] [94] Hu Y, Ji Q X, Huang M J, Chang L F, Zhang C C, Wu G, Zi B, Bao N Z, Chen W and Wu Y C 2021 Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructureAngew. Chem., Int. Ed.6020511–7

[95] [95] Li M T, Wang X, Dong B and Sitti M 2020 In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuatorNat. Commun.113988

[96] [96] Lei B, Wen Z Y, Wang H K, Gao J and Chen L J 2024 Bioinspired jumping soft actuators of the liquid crystal elastomer enabled by photo-mechanical couplingACS Appl. Mater. Interfaces161596–604

[97] [97] Del Pozo M, Liu L, Da Cunha M P, Broer D J and Schenning A P H J 2020 Direct ink writing of a light-responsive underwater liquid crystal actuator with atypical temperature-dependent shape changesAdv. Funct. Mater.302005560

[98] [98] Yang H R, Wu D S, Zheng S M, Yu Y J, Ren L Y, Li J, Ke H Z, Lv P F and Wei Q F 2024 Fabrication and photothermal actuation performances of electrospun carbon nanotube/liquid crystal elastomer blend yarn actuatorsACS Appl. Mater. Interfaces169313–22

[99] [99] Wu B Y, Chu W J, Xia B Q and Zhou Y G 2024 Construction of spring-shaped UHMWPE fiber-based soft actuators with stable/fast actuating response and large actuating strokeACS Appl. Polym. Mater.65216–25

[100] [100] Huang Z J, Tsui G C P, Deng Y, Tang C Y, Yang M, Zhang M and Wong W Y 2022 Bioinspired near-infrared light-induced ultrafast soft actuators with tunable deformation and motion based on conjugated polymers/liquid crystal elastomersJ. Mater. Chem.C1012731–40

[101] [101] Zhao X, Liang Y P, Huang Y, He J H, Han Y and Guo B L 2020 Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressingAdv. Funct. Mater.301910748

[102] [102] Kim S, Regitsky A U, Song J, Ilavsky J, McKinley G H and Holten-Andersen N 2021In situmechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralizationNat. Commun.12667

[103] [103] Liang R X, Yu H J, Wang L, Wang N and Amin B U 2021 NIR light-triggered shape memory polymers based on mussel-inspired iron-catechol complexesAdv. Funct. Mater.312102621

[104] [104] Perrot A, Wang W Z, Buhler E, Moulin E and Giuseppone N 2023 Bending actuation of hydrogels through rotation of light-driven molecular motorsAngew. Chem., Int. Ed.62e202300263

[105] [105] Li X Fet al2024 Tendril-inspired programmable liquid metal photothermal actuators for soft robotsAdv. Funct. Mater.342310380

[106] [106] Wang Y C, Dang A L, Zhang Z F, Yin R, Gao Y C, Feng L and Yang S 2020 Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomersAdv. Mater.322004270

[107] [107] Fang M Q, Liu T, Xu Y, Jin B J, Zheng N, Zhang Y, Zhao Q, Jia Z and Xie T 2021 Ultrafast digital fabrication of designable architectured liquid crystalline elastomerAdv. Mater.332105597

[108] [108] Deng H, Zhang C, Su J W, Xie Y C, Zhang C and Lin J 2018 Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structuresJ. Mater. Chem.B65415–23

[109] [109] Lahikainen M, Zeng H and Priimagi A 2018 Reconfigurable photoactuator through synergistic use of photochemical and photothermal effectsNat. Commun.94148

[110] [110] Verpaalen R C P, Da Cunha M P, Engels T A P, Debije M G and Schenning A P H J 2020 Liquid crystal networks on thermoplastics: reprogrammable photo-responsive actuatorsAngew. Chem., Int. Ed.594532–6

[111] [111] Ni C J, Chen D, Wen X, Jin B J, He Y, Xie T and Zhao Q 2023 High speed underwater hydrogel robots with programmable motions powered by lightNat. Commun.147672

[112] [112] Wang P L, Zheng G Q, Dai K, Liu C T and Shen C Y 2022 Programmable micropatterned surface for single-layer homogeneous-polymer Janus actuatorChem. Eng. J.430133052

[113] [113] Ware T H, McConney M E, Wie J J, Tondiglia V P and White T J 2015 Voxelated liquid crystal elastomersScience347982–4

[114] [114] Ghosh R, Telpande S, Gowda P, Reddy S K, Kumar P and Misra A 2020 Deterministic role of carbon nanotube-substrate coupling for ultrahigh actuation in bilayer electrothermal actuatorsACS Appl. Mater. Interfaces1229959–70

[115] [115] Wang H X, Zhao X Y, Jiang J Q, Liu Z T, Liu Z W and Li G 2022 Thermal-responsive hydrogel actuators with photo-programmable shapes and actuating trajectoriesACS Appl. Mater. Interfaces1451244–52

[116] [116] Fuentes J M G, Gmpel P and Strittmatter J 2002 Phase change behavior of nitinol shape memory alloysAdv. Eng. Mater.4437–52

[117] [117] Voit W, Ware T, Dasari R R, Smith P, Danz L, Simon D, Barlow S, Marder S R and Gall K 2010 High-strain shape-memory polymersAdv. Funct. Mater.20162–71

[118] [118] Nguyen T D, Yakacki C M, Brahmbhatt P D and Chambers M L 2010 Modeling the relaxation mechanisms of amorphous shape memory polymersAdv. Mater.223411–23

[119] [119] Xia Y L, He Y, Zhang F H, Liu Y J and Leng J S 2021 A review of shape memory polymers and composites: mechanisms, materials, and applicationsAdv. Mater.332000713

[120] [120] Liang R X, Yu H J, Wang L, Ul Amin B, Wang N, Fu J C, Xing Y S, Shen D and Ni Z P 2021 Triple and two-way reversible shape memory polymer networks with body temperature and water responsivenessChem. Mater.331190–200

[121] [121] Lendlein A and Gould O E C 2019 Reprogrammable recovery and actuation behaviour of shape-memory polymersNat. Rev. Mater.4116–33

[122] [122] Zheng J, Xiao P, Le X X, Lu W, Thato P, Ma C X, Du B Y, Zhang J W, Huang Y J and Chen T 2018 Mimosa inspired bilayer hydrogel actuator functioning in multi-environmentsJ. Mater. Chem.C61320–7

[123] [123] Li Y X, Liu L C, Xu H, Cheng Z H, Yan J H and Xie X M 2022 Biomimetic gradient hydrogel actuators with ultrafast thermo-responsiveness and high strengthACS Appl. Mater. Interfaces1432541–50

[124] [124] Kim Y S, Liu M J, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Takata M and Aida T 2015 Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogelNat. Mater.141002–7

[125] [125] Xu W Z, Dong P L, Lin S P, Kuang Z W, Zhang Z Q, Wang S L, Ye F M, Cheng L, Wu H P and Liu A P 2022 Bioinspired bilayer hydrogel-based actuator with rapidly bidirectional actuation, programmable deformation and devisable functionalitySens. ActuatorsB359131547

[126] [126] Yang Y Y, Xiao Y, Wu X, Deng J J, Wei R F, Liu A S, Chai H Y and Wang R 2024 Microgel-crosslinked thermo-responsive hydrogel actuators with high mechanical properties and rapid responseMacromol. Rapid Commun.45e2300643

[127] [127] Chen L, Wei X S, Wang F, Jian S J, Yang W S, Ma C X, Duan G G and Jiang S H 2022In-situpolymerization for mechanical strong composite actuators based on anisotropic wood and thermoresponsive polymerChin. Chem. Lett.332635–8

[128] [128] Liu J, Jiang L, Liu A, He S and Shao W 2022 Ultrafast thermo-responsive bilayer hydrogel actuator assisted by hydrogel microspheresSens. ActuatorsB357131434

[129] [129] Zhou L Y, Ye J H, Fu J Z, Gao Q and He Y 2020 4D printing of high-performance thermal-responsive liquid metal elastomers driven by embedded microliquid chambersACS Appl. Mater. Interfaces1212068–74

[130] [130] Zhu L F, Chen Y Z, Shang W H, Handschuh-Wang S, Zhou X H, Gan T S, Wu Q X, Liu Y Z and Zhou X C 2019 Anisotropic liquid metal-elastomer compositesJ. Mater. Chem.C710166–72

[131] [131] Jeong J H, Mun T J, Kim H, Moon J H, Lee D W, Baughman R H and Kim S J 2019 Carbon nanotubes-elastomer actuator driven electrothermally by low-voltageNanoscale Adv.1965–8

[132] [132] Gao D C, Lin M F, Xiong J Q, Li S H, Lou S N, Liu Y Z, Ciou J H, Zhou X R and Lee P S 2020 Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayersNanoscale Horiz.5730–8

[133] [133] Keneth E S, Scalet G, Layani M, Tibi G, Degani A, Auricchio F and Magdassi S 2020 Pre-programmed tri-layer electro-thermal actuators composed of shape memory polymer and carbon nanotubesSoft Robot.7123–9

[134] [134] An Y M, Gao L M and Wang T Y 2020 Graphene oxide/alginate hydrogel fibers with hierarchically arranged helical structures for soft actuator applicationACS Appl. Nano Mater.35079–87

[135] [135] Zhang P, Debije M G, De Haan L T and Schenning A P H J 2022 Pigmented structural color actuators fueled by near-infrared lightACS Appl. Mater. Interfaces1420093–100

[136] [136] Wang R, Shen Y N, Qian D, Sun J K, Zhou X, Wang W C and Liu Z F 2020 Tensile and torsional elastomer fiber artificial muscle by entropic elasticity with thermo-piezoresistive sensing of strain and rotation by a single electric signalMater. Horiz.73305–15

[137] [137] Mirvakili S M, Sim D, Hunter I W and Langer R 2020 Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitionsSci. Robot.5eaaz4239

[138] [138] Liu Q K, Wang W, Reynolds M F, Cao M C, Miskin M Z, Arias T A, Muller D A, Mceuen P L and Cohen I 2021 Micrometer-sized electrically programmable shape-memory actuators for low-power microroboticsSci. Robot.6eabe6663

[139] [139] Lee Y, Song W J and Sun J Y 2020 Hydrogel soft roboticsMater. Today Phys.15100258

[140] [140] Wang M, Zhou L, Deng W Y, Hou Y Q, He W, Yu L J, Sun H, Ren L and Hou X 2022 Ultrafast response and programmable locomotion of liquid/vapor/light-driven soft multifunctional actuatorsACS Nano162672–81

[141] [141] Hu H, Wang B S, Chen B H, Deng X and Gao G H 2022 Swellable poly (ionic liquid) s: synthesis, structure-property relationships and applicationsProg. Polym. Sci.134101607

[142] [142] Shi Q, Liu H, Tang D D, Li Y H, Li X J and Xu F 2019 Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applicationsNPG Asia Mater.1164

[143] [143] Han Z Let al2020 Dual pH-responsive hydrogel actuator for lipophilic drug deliveryACS Appl. Mater. Interfaces1212010–7

[144] [144] Cangialosi A, Yoon C, Liu J Y, Huang Q, Guo J K, Nguyen T D, Gracias D H and Schulman R 2017 DNA sequence-directed shape change of photopatterned hydrogels via high-degree swellingScience3571126–30

[145] [145] Niu W W, Li Z Q, Liang F L, Zhang H Y and Liu X K 2024 Ultrastable, superrobust, and recyclable supramolecular polymer networksAngew. Chem., Int. Ed.63e202318434

[146] [146] Zhang Y, Sun T Y, Zhang D S, Li C, Liu J R, Li B S and Shi Z F 2023 The high-strength, flexible organic solvent driven reversible “deformation-recovery-reverse deformation” responsive g-PLA/PPC/PVA film for contactless actuationAdv. Mater. Technol.82202055

[147] [147] Zhao Q, Dunlop J W C, Qiu X L, Huang F H, Zhang Z B, Heyda J, Dzubiella J, Antonietti M and Yuan J Y 2014 An instant multi-responsive porous polymer actuator driven by solvent molecule sorptionNat. Commun.54293

[148] [148] Lao Z X, Sun R, Jin D D, Ren Z G, Xin C, Zhang Y C, Jiang S J, Zhang Y Y and Zhang L 2021 Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parametersInt. J. Extrem. Manuf.3025001

[149] [149] Li Ret al2020 Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond Bessel beam forin situparticle and cell manipulationACS Nano145233–42

[150] [150] Li J Jet al2019 Photothermal bimorph actuators with in-built cooler for light mills, frequency switches, and soft robotsAdv. Funct. Mater.291808995

[151] [151] Zarzar L D, Kim P and Aizenberg J 2011 Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pHAdv. Mater.231442–6

[152] [152] Song Y, Ma Z W and Zhang W K 2022 Manipulation of a single polymer chain: from the nanomechanical properties to dynamic structure evolutionMacromolecules554177–99

[153] [153] Qin B, Yin Z H, Tang X Y, Zhang S, Wu Y H, Xu J F and Zhang X 2020 Supramolecular polymer chemistry: from structural control to functional assemblyProg. Polym. Sci.100101167

[154] [154] Zhang Het al2019 Superstretchable dynamic polymer networksAdv. Mater.311904029

[155] [155] Zou M, Li S T, Hu X Y, Leng X Q, Wang R, Zhou X and Liu Z F 2021 Progresses in tensile, torsional, and multifunctional soft actuatorsAdv. Funct. Mater.312007437

[156] [156] Kim J, Zhang G G, Shi M X Z and Suo Z G 2021 Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-linksScience374212–6

[157] [157] Xu W H, Ravichandran D, Jambhulkar S, Zhu Y X and Song K N 2021 Hierarchically structured composite fibers for real nanoscale manipulation of carbon nanotubesAdv. Funct. Mater.312009311

[158] [158] Shi C Y, Zhang Q, Yu C Y, Rao S J, Yang S, Tian H and Qu D H 2020 An ultrastrong and highly stretchable polyurethane elastomer enabled by a zipper-like ring-sliding effectAdv. Mater.322000345

[159] [159] Liu X, Wu J P, Qiao K K, Liu G H, Wang Z J, Lu T Q, Suo Z G and Hu J 2022 Topoarchitected polymer networks expand the space of material propertiesNat. Commun.131622

[160] [160] Steck J, Kim J, Kutsovsky Y and Suo Z G 2023 Multiscale stress deconcentration amplifies fatigue resistance of rubberNature624303–8

[161] [161] Tan H, Zhang L Z, Ma X P, Sun L J, Yu D L and You Z W 2023 Adaptable covalently cross-linked fibersNat. Commun.142218

[162] [162] Li J Y, Wu X L and Su Y W 2023 An overstretch strategy to double the designed elastic stretchability of stretchable electronicsAdv. Mater.352300340

[163] [163] Guo Z W, Lu X Y, Wang X H, Li X, Li J and Sun J Q 2023 Engineering of chain rigidity and hydrogen bond cross-linking toward ultra-strong, healable, recyclable, and water-resistant elastomersAdv. Mater.352300286

[164] [164] Zheng Y, Zhang S, Tok J B H and Bao Z N 2022 Molecular design of stretchable polymer semiconductors: current progress and future directionsJ. Am. Chem. Soc.1444699–715

[165] [165] Xu J Het al2023 Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structureAdv. Mater.352300937

[166] [166] Zhang J, He B Z, Hu Y B, Alam P, Zhang H K, Lam J W Y and Tang B Z 2021 Stimuli-responsive AIEgensAdv. Mater.33e2008071

[167] [167] Liu K Ket al2020 Programmable reversible shape transformation of hydrogels based on transient structural anisotropyAdv. Mater.322001693

[168] [168] Wang S Y, Liu Q H, Li L and Urban M W 2021 Recent advances in stimuli-responsive commodity polymersMacromol. Rapid Commun.422100054

[169] [169] Vancoillie G, Frank D and Hoogenboom R 2014 Thermoresponsive poly (oligo ethylene glycol acrylates)Prog. Polym. Sci.391074–95

[170] [170] Bayliss N and Schmidt B V K J 2023 Hydrophilic polymers: current trends and visions for the futureProg. Polym. Sci.147101753

[171] [171] Cao J, Zhou Z H, Song Q C, Chen K Y, Su G H, Zhou T, Zheng Z, Lu C H and Zhang X X 2020 Ultrarobust Ti3C2TxMXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructuresACS Nano147055–65

[172] [172] Jin Q R, Yang Y Q, Jackson J A, Yoon C and Gracias D H 2020 Untethered single cell grippers for active biopsyNano Lett.205383–90

[173] [173] Liu X J, Chen W J, Zhao D F, Liu X X, Wang Y, Chen Y D and Ma X 2022 Enzyme-powered hollow nanorobots for active microsampling enabled by thermoresponsive polymer gatingACS Nano1610354–63

[174] [174] Cui J Z, Huang T Y, Luo Z C, Testa P, Gu H R, Chen X Z, Nelson B J and Heyderman L J 2019 Nanomagnetic encoding of shape-morphing micromachinesNature575164–8

[175] [175] Liu D, Guo R R, Wang B, Hu J W and Lu Y 2022 Magnetic micro/nanorobots: a new age in biomedicinesAdv. Intell. Syst.42200208

[176] [176] Zhou H J, Mayorga-Martinez C C, Pan S, Zhang L and Pumera M 2021 Magnetically driven micro and nanorobotsChem. Rev.1214999–5041

[177] [177] Hu L, Chen H H, Ju M, Hou A Q, Xie K L and Gao A Q 2022 Self-assembled nanodot actuator with changeable fluorescence by – stacking force based on a four-armed foldable phthalocyanine molecule and its supersensitive molecular recognitionNano Lett.226383–90

[178] [178] Chi Y D, Li Y B, Zhao Y, Hong Y Y, Tang Y C and Yin J 2022 Bistable and multistable actuators for soft robots: structures, materials, and functionalitiesAdv. Mater.342110384

[179] [179] Yu K Q, Ji X Z, Yuan T Y, Cheng Y, Li J J, Hu X Y, Liu Z F, Zhou X and Fang L 2021 Robust jumping actuator with a shrimp-shell architectureAdv. Mater.332104558

[180] [180] Lv C Z, Zhou Z J, Li Y Q, Lu S R and Bai Y K 2023 Multi-responsive shape memory porous composites for self-powered sensors and self-sensing actuatorsChem. Eng. J.477147059

[181] [181] Li J H, Tian A F, Zhai Z X, Zhang D S and Du H L 2023 Preparation and performance research of porous and Venus flytrap-shaped IPMCSmart Mater. Struct.32065008

[182] [182] Wang F, Li Q C, Park J O, Zheng S H and Choi E 2021 Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robotsAdv. Funct. Mater.312007749

[183] [183] Zhang S, Ke X X, Jiang Q, Ding H and Wu Z G 2021 Programmable and reprocessable multifunctional elastomeric sheets for soft origami robotsSci. Robot.6eabd6107

[184] [184] Zhu Y T and Wu X L 2023 Heterostructured materialsProg. Mater. Sci.131101019

[185] [185] Zheng Z Q, Han J, Demir S O, Wang H P, Jiang W T, Liu H Z and Sitti M 2023 Electrodeposited superhydrophilic-superhydrophobic composites for untethered multi-stimuli-responsive soft millirobotsAdv. Sci.10e2302409

[186] [186] Liang Z W, Jiang S H, Jiang H C, Zhao X J, Jin B J, Chen G H and Lo S 2023 Arbitrarily and repeatedly programmable multi-layer soft actuators via “stress-caching”Chem. Eng. J.451139054

[187] [187] Alapan Y, Karacakol A C, Guzelhan S N, Isik I and Sitti M 2020 Reprogrammable shape morphing of magnetic soft machinesSci. Adv.6eabc6414

[188] [188] Yan X N, Chen Q, Huo Z Y, Zhang N and Ma M M 2022 Programmable multistimuli-responsive and multimodal polymer actuator based on a designed energy transduction networkACS Appl. Mater. Interfaces1413768–77

[189] [189] Jiang C G, Zeng W J, Ding X X and Wu D F 2023 Regulating boronic ester bonds in bilayer hydrogels toward fabricating multistimuli-triggered actuatorsACS Sustain. Chem. Eng.1114094–102

[190] [190] Liu C, Tan Y Z, He C W, Ji S B and Xu H P 2021 Unconstrained 3D shape programming with light-induced stress gradientAdv. Mater.332105194

[191] [191] Wang Z J, Tian H M, He Q G and Cai S Q 2017 Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bondsACS Appl. Mater. Interfaces933119–28

[192] [192] Tan Y, Liu Z T, Liu Z W, Jiang J Q and Li G 2023 Shape-memory-effect-enabled programmable moisture-and acetone-responsive actuation of an Janus polymer filmChem. Eng. J.454140270

[193] [193] Chen G C, Dong J T, Xu X N, Zou W K, Jin B J, Peng W J, Zhao Q, Xie T and Zheng N 2022 Converse two-way shape memory effect through a dynamic covalent network designJ. Mater. Chem.A1010350–4

[194] [194] Chen Cet al2022 Photoinduced dual shape programmability of covalent adaptable networks with remarkable mechanical propertiesNano Lett.228413–21

[195] [195] Duan Y Q, Xie W S, Yin Z P and Huang Y A 2024 Multi-material 3D nanoprinting for structures to functional micro/nanosystemsInt. J. Extrem. Manuf.6063001

[196] [196] Tan M W M, Thangavel G and Lee P S 2021 Rugged soft robots using tough, stretchable, and self-healable adhesive elastomersAdv. Funct. Mater.312103097

[197] [197] Di Y, Zhang Y Y, Wen Y T, Yao H Y, Zhou Z X, Ren Z X, Tian H M and Shao J Y 2024 Inchworm-inspired soft robot with controllable locomotion based on self-sensing of deformationIEEE Robot. Autom. Lett.94345–52

[198] [198] Wang S Y and Urban M W 2020 Self-healing polymersNat. Rev. Mater.5562–83

[199] [199] Li S N, Yang H L, Chen G Q, Zheng J X, Wang W Q, Ren J Y, Zhu C J, Yang Y B, Cang Y and Fu J 2023 4D printing of biomimetic anisotropic self-sensing hydrogel actuatorsChem. Eng. J.473145444

[200] [200] Liu Y Z, Yue S Z, Tian Z Y, Zhu Z J, Li Y J, Chen X Y, Wang Z L, Yu Z Z and Yang D 2024 Self-powered and self-healable extraocular-muscle-like actuator based on dielectric elastomer actuator and triboelectric nanogeneratorAdv. Mater.362309893

[201] [201] Chen H L, Shi Z, Hsu T G and Wang J P 2021 Overcoming the low driving force in forming depolymerizable polymers through monomer isomerizationAngew. Chem., Int. Ed.6025493–8

[202] [202] Grosjean M, Schmidleithner C, Dejean S, Larsen N B and Nottelet B 2024 Degradable 4D-printed hydration-driven actuators from a single family of amphiphilic star-shaped copolymersMater. Des.241112953

[203] [203] Zhang S, Ke X X, Jiang Q, Chai Z P, Wu Z G and Ding H 2022 Fabrication and functionality integration technologies for small-scale soft robotsAdv. Mater.342200671

[204] [204] Dong X Xet al2022 Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applicationsSoft Matter187699–734

[205] [205] Ye M, Zhou Y, Zhao H Y, Wang Z Y, Nelson B J and Wang X P 2023 A review of soft microrobots: material, fabrication, and actuationAdv. Intell. Syst.52300311

[206] [206] Bell M A, Becker K P and Wood R J 2022 Injection molding of soft robotsAdv. Mater. Technol.72100605

[207] [207] Czepiel M, Bakosz M and Sobczak-Kupiec A 2023 Advanced injection molding methods: reviewMaterials165802

[208] [208] Ru J, Zhao D X, Zhu Z C and Wang Y J 2022 Fabrication and characterization of a novel smart-polymer actuator with nanodispersed CNT/Pd composite interfacial electrodesPolymers143494

[209] [209] Li B, Jiang L, Ma W T, Zhang Y K, Sun W J and Chen G M 2022 A switchable dual-mode actuator enabled by bistable structureAdv. Intell. Syst.42100188

[210] [210] Ince J C, Duffy A R and Salim N V 2024 Silver coated multifunctional liquid crystalline elastomer polymeric composites as electro-responsive and piezo-resistive artificial musclesMacromol. Rapid Commun.452400370

[211] [211] Xu P X, Yu Q, Chen Y, Cheng P and Zhang Z J 2022 Protective coating with crystalline shells to fabricate dual-stimuli responsive actuatorsCCS Chem.4205–13

[212] [212] Jian Y K, Wu B Y, Yang X X, Peng Y, Zhang D C, Yang Y, Qiu H Y, Lu H H, Zhang J W and Chen T 2022 Stimuli-responsive hydrogel sponge for ultrafast responsive actuatorSupramol. Mater.1100002

[213] [213] Tang L, Xu Y, Liu F, Liu S H, Chen Z H, Tang J X and Wu S J 2023 Synchronous ultraviolet polymerization strategy to improve the interfacial toughness of bilayer hydrogel actuatorsMacromolecules566199–207

[214] [214] Park J W, Kim J H, Lee K S, Park S M and Shin D S 2024 Development of stimuli-responsive flexible micropillar composites via magneto-induced injection molding and characterization of magnetic particle alignmentPolym. Test.130108316

[215] [215] Jiang S Jet al2020 Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transferNano Lett.207519–29

[216] [216] Zhang Y Cet al2018 Localized self-growth of reconfigurable architectures induced by a femtosecond laser on a shape-memory polymerAdv. Mater.301803072

[217] [217] Wang J Y, Jin F, Dong X Z, Liu J and Zheng M L 2022 Flytrap inspired pH-driven 3D hydrogel actuator by femtosecond laser microfabricationAdv. Mater. Technol.72200276

[218] [218] Wang J Y, Jin F, Dong X Z, Liu J, Zhou M X, Li T and Zheng M L 2023 Dual-stimuli cooperative responsive hydrogel microactuators via two-photon lithographySmall192303166

[219] [219] Yang D H, Jia Q X, Wang C H and Zheng T F 2021 Programmable and reversible self-assembly of 3D architectures actuated by flexible metal-organic frameworksSens. ActuatorsB346130388

[220] [220] Dallinger A, Kindlhofer P, Greco F and Coclite A M 2021 Multiresponsive soft actuators based on a thermoresponsive hydrogel and embedded laser-induced grapheneACS Appl. Polym. Mater.31809–18

[221] [221] Lv Y H, Li Q C, Shi J X, Qin Z, Lei Q J, Zhao B, Zhu L L and Pan K 2022 Graphene-based moisture actuator with oriented microstructures prepared by one-step laser reduction for accurately controllable responsive direction and positionACS Appl. Mater. Interfaces1412434–41

[222] [222] Cheng J Xet al2022 Centrifugal multimaterial 3D printing of multifunctional heterogeneous objectsNat. Commun.137931

[223] [223] Rafiee M, Farahani R D and Therriault D 2020 Multi-material 3D and 4D printing: a surveyAdv. Sci.71902307

[224] [224] Wang D, Wang J Q, Shen Z Q, Jiang C R, Zou J, Dong L, Fang N X and Gu G Y 2023 Soft actuators and robots enabled by additive manufacturingAnnu. Rev. Control Robot. Auton. Syst.631–63

[225] [225] Carrico J D and Leang K K 2017 Fused filament 3D printing of ionic polymer-metal composites for soft roboticsProc. SPIE10163101630I

[226] [226] Engel K E, Kilmartin P A and Diegel O 2022 Recent advances in the 3D printing of ionic electroactive polymers and core ionomeric materialsPolym. Chem.13456–73

[227] [227] Zhou F H, Zhang M Q, Cao X N, Zhang Z, Chen X P, Xiao Y H, Liang Y M, Wong T W, Li T F and Xu Z B 2019 Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frameSens. ActuatorsA292112–20

[228] [228] Danner P M, Pleij T, Siqueira G, Bayles A V, Venkatesan T R, Vermant J and Opris D M 2024 Polysiloxane inks for multimaterial 3D printing of high-permittivity dielectric elastomersAdv. Funct. Mater.342313167

[229] [229] Cohen A J, Kollosche M, Yuen M C, Lee D Y, Clarke D R and Wood R J 2022 Batch-sprayed and stamp-transferred electrodes: a new paradigm for scalable fabrication of multilayer dielectric elastomer actuatorsAdv. Funct. Mater.322205394

[230] [230] Bayaniahangar R, Ahangar S B, Zhang Z T, Lee B P and Pearce J M 2021 3-D printed soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxaneSens. ActuatorsB326128781

[231] [231] Ma C P, Wu S, Ze Q J, Kuang X, Zhang R D, Qi H J and Zhao R K 2021 Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviorsACS Appl. Mater. Interfaces1312639–48

[232] [232] Vinciguerra M R, Patel D K, Zu W Z, Tavakoli M, Majidi C and Yao L N 2023 Multimaterial printing of liquid crystal elastomers with integrated stretchable electronicsACS Appl. Mater. Interfaces1524777–87

[233] [233] Skillin N P, Bauman G E, Kirkpatrick B E, McCracken J M, Park K, Vaia R A, Anseth K S and White T J 2024 Photothermal actuation of thick 3D-printed liquid crystalline elastomer nanocompositesAdv. Mater.362313745

[234] [234] Tang Z Z, Gong J H, Cao P R, Tao L M, Pei X Q, Wang T M, Zhang Y M, Wang Q H and Zhang J Q 2022 3D printing of a versatile applicability shape memory polymer with high strength and high transition temperatureChem. Eng. J.431134211

[235] [235] Puza F and Lienkamp K 2022 3D printing of polymer hydrogels-from basic techniques to programmable actuationAdv. Funct. Mater.322205345

[236] [236] Tibbits S 2014 4D printing: multi-material shape changeArchit. Des.84116–21

[237] [237] Hu X Y, Ge Z X, Wang X D, Jiao N D, Tung S and Liu L Q 2022 Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printingCompositesB228109451

[238] [238] Zhang H, Huang S, Sheng J, Fan L S, Zhou J Z, Shan M Y, Wei J, Wang C, Yang H W and Lu J Z 2022 4D printing of Ag nanowire-embedded shape memory composites with stable and controllable electrical responsivity: implications for flexible actuatorsACS Appl. Nano Mater.56221–31

[239] [239] Guan Z C, Wang L and Bae J 2022 Advances in 4D printing of liquid crystalline elastomers: materials, techniques, and applicationsMater. Horiz.91825–49

[240] [240] Zhai F, Feng Y Y, Li Z Y, Xie Y X, Ge J, Wang H, Qiu W and Feng W 2021 4D-printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploringMatter43313–26

[241] [241] Sartori P, Yadav R S, Del Barrio J, DeSimone A and Snchez-Somolinos C 2024 Photochemically induced propulsion of a 4D printed liquid crystal elastomer biomimetic swimmerAdv. Sci.112308561

[242] [242] Morales Ferrer J M, Snchez Cruz R E, Caplan S, Van Rees W M and Boley J W 2024 Multiscale heterogeneous polymer composites for high stiffness 4D printed electrically controllable multifunctional structuresAdv. Mater.362307858

[243] [243] Ji D X, Lin Y G, Guo X Y, Ramasubramanian B, Wang R W, Radacsi N, Jose R, Qin X H and Ramakrishna S 2024 Electrospinning of nanofibresNat. Rev. Methods Primers41

[244] [244] Topuz F, Abdulhamid M A, Holtzl T and Szekely G 2021 Nanofiber engineering of microporous polyimides through electrospinning: influence of electrospinning parameters and salt additionMater. Des.198109280

[245] [245] Beregoi M, Evanghelidis A, Diculescu V C, Iovu H and Enculescu I 2017 Polypyrrole actuator based on electrospun microribbonsACS Appl. Mater. Interfaces938068–75

[246] [246] Jiang S H, Liu F Y, Lerch A, Ionov L and Agarwal S 2015 Unusual and superfast temperature-triggered actuatorsAdv. Mater.274865–70

[247] [247] Chen T T, Bakhshi H, Liu L, Ji J and Agarwal S 2018 Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuatorsAdv. Funct. Mater.281800514

[248] [248] Wu D Set al2024 Novel biomimetic “spider web” robust, super-contractile liquid crystal elastomer active yarn soft actuatorAdv. Sci.112400557

[249] [249] Wang L, Zhang F H, Liu Y J and Leng J S 2022 Shape memory polymer fibers: materials, structures, and applicationsAdv. Fiber Mater.45–23

[250] [250] Zhang F H, Zhang Z C, Luo C J, Lin I T, Liu Y J, Leng J S and Smoukov S K 2015 Remote, fast actuation of programmable multiple shape memory composites by magnetic fieldsJ. Mater. Chem.C311290–3

[251] [251] Zhao Yet al2018 Improve the performance of mechanoelectrical transduction of ionic polymer-metal composites based on ordered Nafion nanofibres by electrospinningPolymers10803

[252] [252] Qian L Y, Chen C L, Huang Y, Ren H D, Cao X H, He B H and Li J R 2023 Nanocellulose-based electroactive actuators and their performance with various ionsCellulose304455–68

[253] [253] Wei J, Jia S, Wei J, Ma C and Shao Z Q 2021 Tough and multifunctional composite film actuators based on cellulose nanofibers toward smart wearablesACS Appl. Mater. Interfaces1338700–11

[254] [254] Zheng G F, Jiang J X, Wang X, Li W W, Liu J, Fu G and Lin L W 2020 Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applicationsMater. Des.189108504

[255] [255] Xu H Z, Yagi S, Ashour S, Du L, Hoque M E and Tan L 2023 A review on current nanofiber technologies: electrospinning, centrifugal spinning, and electro-centrifugal spinningMacromol. Mater. Eng.3082200502

[256] [256] Kuo J C, Huang H W, Tung S W and Yang Y J 2014 A hydrogel-based intravascular microgripper manipulated using magnetic fieldsSens. ActuatorsA211121–30

[257] [257] Xu T Q, Zhang J C, Salehizadeh M, Onaizah O and Diller E 2019 Millimeter-scale flexible robots with programmable three-dimensional magnetization and motionsSci. Robot.4eaav4494

[258] [258] Nguyen K Tet al2021 A magnetically guided self-rolled microrobot for targeted drug delivery, real-time x-ray imaging, and microrobot retrievalAdv. Healthcare Mater.102001681

[259] [259] Yu S M, Zhong J, Zhong Y T, Yu M M, Liu Z Y and Shen L 2024 Improvement of extrinsic self-healing performance by dual pH-responsive, two-compartment microcapsulesACS Appl. Polym. Mater.64005–13

[260] [260] Shen C, Lan R C, Huang R, Zhang Z P, Bao J Y, Zhang L Y and Yang H 2021 Photochemically and photothermally controllable liquid crystalline network and soft walkersACS Appl. Mater. Interfaces133221–7

[261] [261] Yang Y K, Zhan W J, Peng R G, He C G, Pang X C, Shi D A, Jiang T and Lin Z Q 2015 Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocompositesAdv. Mater.276376–81

[262] [262] Jiang J H, Wang X Y, Akomolafe O I, Tang W T, Asilehan Z, Ranabhat K, Zhang R and Peng C H 2023 Collective transport and reconfigurable assembly of nematic colloids by light-driven cooperative molecular reorientationsProc. Natl Acad. Sci. USA120e2221718120

[263] [263] Bao J Y, Wang Z Z, Song C J, Zhang Y H, Li Z Z, Zhang L Y, Lan R C and Yang H 2023 Shape-programmable liquid-crystalline polyurethane-based multimode actuators triggered by light-driven molecular motorsAdv. Mater.352302168

[264] [264] Zhang Y Bet al2019 Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection ofC. difftoxinsSci. Adv.5eaau9650

[265] [265] Wu J Eet al2021 Helical klinotactic locomotion of two-link nanoswimmers with dual-function drug-loaded soft polysaccharide hingesAdv. Sci.82004458

[266] [266] Wu Z Get al2018 A swarm of slippery micropropellers penetrates the vitreous body of the eyeSci. Adv.4eaat4388

[267] [267] Xi W, Solovev A A, Ananth A N, Gracias D H, Sanchez S and Schmidt O G 2013 Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgeryNanoscale51294–7

[268] [268] Zhang Bet al2021 Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printingAdv. Mater.332101298

[269] [269] Zhao H, Huang Y M, Lv F T, Liu L B, Gu Q and Wang S 2021 Biomimetic 4D-printed breathing hydrogel actuators by nanothylakoid and thermoresponsive polymer networksAdv. Funct. Mater.312105544

[270] [270] Qu J Tet al2024 Recent advances on underwater soft robotsAdv. Intell. Syst.62300299

[271] [271] Xiao P S, Yi N B, Zhang T F, Huang Y, Chang H C, Yang Y, Zhou Y and Chen Y S 2016 Construction of a fish-like robot based on high performance graphene/PVDF bimorph actuation materialsAdv. Sci.31500438

[272] [272] Li T Fet al2017 Fast-moving soft electronic fishSci. Adv.3e1602045

[273] [273] Lin D Z, Yang F, Gong D and Li R H 2023 Bio-inspired magnetic-driven folded diaphragm for biomimetic robotNat. Commun.14163

[274] [274] Ren Z Y, Hu W Q, Dong X G and Sitti M 2019 Multi-functional soft-bodied jellyfish-like swimmingNat. Commun.102703

[275] [275] Wang T L, Joo H J, Song S Y, Hu W Q, Keplinger C and Sitti M 2023 A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulationSci. Adv.9eadg0292

[276] [276] Najem J, Sarles S A, Akle B and Leo D J 2012 Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuatorsSmart Mater. Struct.21094026

[277] [277] Villanueva A, Smith C and Priya S 2011 A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuatorsBioinsp. Biomim.6036004

[278] [278] Cheng T Yet al2019 Untethered soft robotic jellyfishSmart Mater. Struct.28015019

[279] [279] Wang Y Z, Zhang P P, Huang H and Zhu J 2023 Bio-inspired transparent soft jellyfish robotSoft Robot.10590–600

[280] [280] Yin C, Wei F A, Fu S H, Zhai Z S, Ge Z X, Yao L G, Jiang M L and Liu M 2021 Visible light-driven jellyfish-like miniature swimming soft robotACS Appl. Mater. Interfaces1347147–54

[281] [281] Shin S Ret al2018 Electrically driven microengineered bioinspired soft robotsAdv. Mater.301704189

[282] [282] Zhao Y S, Lo C Y, Ruan L C, Pi C H, Kim C, Alsaid Y, Frenkel I, Rico R, Tsao T C and He X M 2021 Somatosensory actuator based on stretchable conductive photothermally responsive hydrogelSci. Robot.6eabd5483

[283] [283] Choi H, Jeong S, Lee C, Go G, Kwon K, Ko S Y, Park J O and Park S 2014 Biomimetic swimming tadpole microrobot using 3-pairs Helmholtz coilsProc. 5th IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics(IEEE) pp 841–4

[284] [284] Xu L, Yang L, Li T, Zhang X B and Ding J N 2024 Deformation and locomotion of untethered small-scale magnetic soft robotic turtle with programmable magnetizationJ. Bionic Eng.21754–63

[285] [285] Wang X W, Yuan Z, Guo Q H, Wang W H, Liu H B, Liu A Q, Ge Z X, Yu H B and Yang W G 2023 An underwater bionic snake soft robot with tunable deformation and motion based on composite materialsAdv. Mater. Technol.82202012

[286] [286] Manamanchaiyaporn L, Xu T T and Wu X Y 2020 Magnetic soft robot with the triangular head-tail morphology inspired by lateral undulationIEEE/ASME Trans. Mechatronics252688–99

[287] [287] Xia X M, Meng J, Qin J J, Yang G Z, Xuan P Y, Huang Y P, Fan W, Gu Y, Lai F L and Liu T X 2024 4D-printed bionic soft robot with superior mechanical properties and fast near-infrared light responseACS Appl. Polym. Mater.63170–8

[288] [288] Wang X W, Wang W H, Liu H B, Guo Q H, Yu H B, Yuan Z and Yang W G 2023 Bionic sea anemone actuator with a double-layered gripper driven by multiple physical fieldsACS Appl. Polym. Mater.55582–91

[289] [289] Guo Q H, Yang W G, Liu H B, Wang W H, Ge Z X and Yuan Z 2023 An aquatic biomimetic butterfly soft robot driven by deformable photo-responsive hydrogelSoft Matter197370–8

[290] [290] Huang H W, Uslu F E, Katsamba P, Lauga E, Sakar M S and Nelson B J 2019 Adaptive locomotion of artificial microswimmersSci. Adv.5eaau1532

[291] [291] Wang X D, Dai L G, Jiao N D, Tung S and Liu L Q 2021 Superhydrophobic photothermal graphene composites and their functional applications in microrobots swimming at the air/water interfaceChem. Eng. J.422129394

[292] [292] Xiang Y Y, Li B, Li B H, Bao L Y, Sheng W B, Ma Y F, Ma S H, Yu B and Zhou F 2022 Toward a multifunctional light-driven biomimetic mudskipper-like robot for various application scenariosACS Appl. Mater. Interfaces1420291–302

[293] [293] Colgate J E and Lynch K M 2004 Mechanics and control of swimming: a reviewIEEE J. Ocean. Eng.29660–73

[294] [294] Wang Y Y, Su G H, Li J, Guo Q Q, Miao Y G and Zhang X X 2022 Robust, healable, self-locomotive integrated robots enabled by noncovalent assembled gradient nanostructureNano Lett.225409–19

[295] [295] Kawashima H, Shioi A, Archer R J, Ebbens S J, Nakamura Y and Fujii S 2019 Light-driven locomotion of a centimeter-sized object at the air-water interface: effect of fluid resistanceRSC Adv.98333–9

[296] [296] Liang R X, Yu H J, Wang L and Shen D 2023 Light-guided dynamic liquid crystalline elastomer actuators enabled by mussel adhesive protein chemistryAdv. Funct. Mater.332211914

[297] [297] Pan Det al2021 Transparent light-driven hydrogel actuator based on photothermal Marangoni effect and buoyancy flow for three-dimensional motionAdv. Funct. Mater.312009386

[298] [298] Pan X L, Grossiord N, Sol J A H P, Debije M G and Schenning A P H J 2021 3D anisotropic polyethylene as light-responsive grippers and surfing diversAdv. Funct. Mater.312100465

[299] [299] Cheng S J, Latthe S S, Nakata K, Xing R M, Liu S H and Fujishima A 2024 Recent advancements in design, development and demands of photothermal superhydrophobic materialsMater. Today Chem.35101868

[300] [300] Yang W G, Wang X W, Teng X Y, Qiao Z Z and Yu H B 2024 Programmable multi-stimulus-responsive whirligig beetle inspired soft robot with multifunctionality based on composite materialsColloids Surf.A693134093

[301] [301] Choi Yet al2021 Photopatterned microswimmers with programmable motion without external stimuliNat. Commun.124724

[302] [302] Lin H, Qian Y Q, Zhou P D, Lin J, Luo Z L, Zhang W and Chen L Z 2024 Electricity-driven strategies for bioinspired multifunctional swimming Marangoni robots based on super-aligned carbon nanotube compositesSmall20e2400906

[303] [303] Li Z W, Myung N V and Yin Y D 2021 Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimmingSci. Robot.6eabi4523

[304] [304] Wang Y B, Du X Z, Zhang H M, Zou Q, Law J and Yu J F 2023 Amphibious miniature soft jumping robot with on-demand in-flight maneuverAdv. Sci.102207493

[305] [305] Yang X, Chen Y H, Zhang X, Xue P, Lv P F, Yang Y Z, Wang L and Feng W 2022 Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorodsNano Today43101419

[306] [306] Ko Jet al2022 High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabotsSci. Robot.7eabo6463

[307] [307] Mao G Y, Schiller D, Danninger D, Hailegnaw B, Hartmann F, Stockinger T, Drack M, Arnold N and Kaltenbrunner M 2022 Ultrafast small-scale soft electromagnetic robotsNat. Commun.134456

[308] [308] Zhao Y S, Xuan C, Qian X S, Alsaid Y, Hua M T, Jin L H and He X M 2019 Soft phototactic swimmer based on self-sustained hydrogel oscillatorSci. Robot.4eaax7112

[309] [309] Yu Z Q, Shang J Y, Shi Q, Xia Y Q, Zhai D H, Wang H P, Huang Q and Fukuda T 2022 Electrically controlled aquatic soft actuators with desynchronized actuation and light-mediated reciprocal locomotionACS Appl. Mater. Interfaces1412936–48

[310] [310] Shahsavan H, Aghakhani A, Zeng H, Guo Y B, Davidson Z S, Priimagi A and Sitti M 2020 Bioinspired underwater locomotion of light-driven liquid crystal gelsProc. Natl Acad. Sci. USA1175125–33

[311] [311] Jeon Jet al2021 Continuous and programmable photomechanical jumping of polymer monolithsMater. Today4997–106

[312] [312] Zhang Z X, Zhang F, Jian W, Chen Y and Feng X 2024 Photothermal-responsive lightweight hydrogel actuator loaded with polydopamine-modified hollow glass microspheresACS Appl. Mater. Interfaces1623914–23

[313] [313] Liu H, Jia X Y, Liu R N, Chen K, Wang Z Y, Lyu T, Cui X Y, Zhao Y and Tian Y 2022 Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivityJ. Mater. Chem.A1021874–83

[314] [314] Chen P Yet al2022 Light-fueled hydrogel actuators with controlled deformation and photocatalytic activityAdv. Sci.92204730

[315] [315] Huang S C, Zhu Y J, Huang X Y, Xia X X and Qian Z G 2024 Programmable adhesion and morphing of protein hydrogels for underwater robotsNat. Commun.15195

[316] [316] Wang S X, Li J J, Li S, Wu X C, Guo C, Yu L M, Murto P, Wang Z H and Xu X F 2023 Self-contained underwater adhesion and informational labeling enabled by arene-functionalized polymeric ionogelsAdv. Funct. Mater.332306814

[317] [317] Zheng S Yet al2022 Water-triggered spontaneously solidified adhesive: from instant and strong underwater adhesion toin situsignal transmissionAdv. Funct. Mater.322205597

[318] [318] Ju G N, Cheng M J, Guo F L, Zhang Q and Shi F 2018 Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assemblyAngew. Chem., Int. Ed.578963–7

[319] [319] Da Cunha M P, Foelen Y, Van Raak R J H, Murphy J N, Engels T A P, Debije M G and Schenning A P H J 2019 An untethered magnetic-and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuatorsAdv. Opt. Mater.71801643

[320] [320] Goudu S R, Yasa I C, Hu X H, Ceylan H, Hu W Q and Sitti M 2020 Biodegradable untethered magnetic hydrogel milli-grippersAdv. Funct. Mater.302004975

[321] [321] Chen Y M, Hu Y and Zhang L W 2024 Effective underwater drag reduction: a butterfly wing scale-inspired superhydrophobic surfaceACS Appl. Mater. Interfaces1626954–64

[322] [322] Wang T P, Li M T, Zhang H, Sun Y Y and Dong B 2018 A multi-responsive bidirectional bending actuator based on polypyrrole and agar nanocompositesJ. Mater. Chem.C66416–22

[323] [323] Sun L C, Zhao Q, Che L X, Li M, Leng X, Long Y J and Lu Y 2024 Multi-stimuli-responsive weldable bilayer actuator with programmable patterns and 3D shapesAdv. Funct. Mater.342311398

[324] [324] Ren Z Y and Sitti M 2024 Design and build of small-scale magnetic soft-bodied robots with multimodal locomotionNat. Protocols19441–86

[325] [325] Wei H S, Sun B N, Zhang S Y and Tang J D 2024 Magnetoactive millirobots with ternary phase transitionACS Appl. Mater. Interfaces163944–54

[326] [326] Dong Y, Wang L, Xia N, Yang Z X, Zhang C, Pan C F, Jin D D, Zhang J C, Majidi C and Zhang L 2022 Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modulesSci. Adv.8eabn8932

[327] [327] Xiang H C, Li Z J, Wang W, Wu H W, Zhou H W, Ni Y H and Liu H B 2023 Enabling a paper-based flexible sensor to work under water with exceptional long-term durability through biomimetic reassembling of nanomaterials from natural woodACS Sustain. Chem. Eng.118667–74

[328] [328] Rong L D, Xie X Y, Yuan W Z and Fu Y 2022 Superior, environmentally tolerant, flexible, and adhesive poly (ionic liquid) gel as a multifaceted underwater sensorACS Appl. Mater. Interfaces1429273–83

[329] [329] Cui X C, Liu Z Z, Zhang B, Tang X D, Fan F Q, Fu Y, Zhang J H, Wang T Q and Meng F B 2023 Sponge-like, semi-interpenetrating self-sensory hydrogel for smart photothermal-responsive soft actuator with biomimetic self-diagnostic intelligenceChem. Eng. J.467143515

[330] [330] Ma S S, Xue P, Valenzuela C, Zhang X, Chen Y H, Liu Y, Yang L, Xu X H and Wang L 2024 Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuatorsAdv. Funct. Mater.342309899

[331] [331] Li Ket al2023 A 5 cm-scale piezoelectric jetting agile underwater robotAdv. Intell. Syst.52200262

[332] [332] Li G Ret al2021 Self-powered soft robot in the Mariana trenchNature59166–71

[333] [333] Hwang J and Wang W D 2022 Shape memory alloy-based soft amphibious robot capable of seal-inspired locomotionAdv. Mater. Technol.72101153

[334] [334] Hu W Q, Lum G Z, Mastrangeli M and Sitti M 2018 Small-scale soft-bodied robot with multimodal locomotionNature55481–85

[335] [335] Cheng Y, Chan K H, Wang X Q, Ding T P, Li T T, Zhang C, Lu W H, Zhou Y and Ho G W 2021 A fast autonomous healing magnetic elastomer for instantly recoverable, modularly programmable, and thermorecyclable soft robotsAdv. Funct. Mater.312101825

[336] [336] Chen Y F, Doshi N, Goldberg B, Wang H Q and Wood R J 2018 Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobotNat. Commun.92495

[337] [337] Gao J F, Clement A, Tabrizi M and Shankar M R 2022 Molecularly directed, geometrically latched, impulsive actuation powers sub-gram scale motilityAdv. Mater. Technol.72100979

[338] [338] Chen Y Fet al2017 A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobotSci. Robot.2eaao5619

Tools

Get Citation

Copy Citation Text

Zhao Xin, Tang Gangqiang, Mei Dong, Zhao Chun, Li Lijie, Wang Yanjie. Stimuli-responsive actuators in water environment: a review and future research agenda[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 22013

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Jul. 12, 2024

Accepted: May. 29, 2025

Published Online: May. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ad9fbb

Topics