Acta Optica Sinica, Volume. 38, Issue 2, 0215006(2018)

Stereo Matching Algorithm for Improved Census Transform and Gradient Fusion

Hairui Fan1,2, Fan Yang1,2、*, Xuran Pan1,2, Jie Wen1,2, and Xiaoyu Wang1,2
Author Affiliations
  • 1 School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • 2 Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
  • show less
    Figures & Tables(16)
    Support window coordinates and weight distribution map with size of 3×3 and standard deviation of 1.5. (a) coordinate distribution map; (b) weight coordinate distribution map; (c) weight distribution map
    Disparity maps before and after improvement by guidance filter algorithm. (a)(c) before improvement; (b)(d) after improvement
    Disparity maps obtained by different matching cost algorithms. (a) CT; (b) MCT; (c) GRD;(d) proposed algorithm
    Disparity maps obtained by different aggregation algorithms. (a) BoxF, R=10.81%; (b) BF, R=8.12%;(c) GF, R=7.85%; (d) MST, R=8.31%; (e) proposed algorithm, R=7.57%
    Comparison of false matching rates of different cost aggregation algorithms in no-occluded regions
    Test results of different stereo matching algorithms on Aloe image pairs. (a) Aloe left image;(b) Aloe right image; (c) GRD, R=10.19%; (d) MCT, R=10.07%; (e) MCT', R=9.74%; (f) proposed algorithm, R=6.74%
    Test results of different stereo matching algorithms on Baby1 image pairs. (a) Baby1 left image; (b) Baby1 right image; (c) GRD, R=12.82%; (d) MCT, R=4.91%; (e) MCT', R=4.53%; (f) proposed algorithm, R=3.75%
    Test results of different stereo matching algorithms on Bowling2 image pairs. (a) Bowling2 left image; (b) Bowling2 right image; (c) GRD, R=12.91%; (d) MCT, R=15.77%; (e) MCT', R=14.21%; (f) proposed algorithm, R=9.04%
    Test results of different stereo matching algorithms on Dolls image pairs. (a) Dolls left image; (b) Dolls right image; (c) GRD, R=7.66%;(d) MCT, R=11.55%; (e) MCT', R=11.87%; (f) proposed algorithm, R=5.77%
    Experimental results of proposed algorithm on Middlebury2.0 image pairs. (a) Testing left image; (b) standard disparity map; (c) disparity map of proposed algorithm(without disparity refinement); (d) mismatched map (without disparity refinement); (e) disparity maps obtained by proposed algorithm (disparity refinement); (f) mismatched map (disparity refinement)
    • Table 1. Parameters involved in proposed stereo matching algorithm

      View table

      Table 1. Parameters involved in proposed stereo matching algorithm

      ParameterωkTgεσThω1TcenλGω2
      Value94.3351×10-51.510.9450.0650250.1
    • Table 2. Percentage of false match in no-occluded region of different matching cost algorithms%

      View table

      Table 2. Percentage of false match in no-occluded region of different matching cost algorithms%

      AlgorithmSADCTMCTMCT’GRDProposed algorithm
      Tsukuba4.653.544.584.502.722.53
      Venus3.452.003.633.551.681.60
      Teddy14.218.5613.0511.327.457.57
      Cones7.704.877.496.784.454.04
      Avg7.504.747.196.544.083.93
    • Table 3. Percentage of false match in all regions of different matching cost algorithms%

      View table

      Table 3. Percentage of false match in all regions of different matching cost algorithms%

      AlgorithmSADCTMCTMCT’GRDProposed algorithm
      Tsukuba4.973.123.363.593.592.86
      Venus8.345.257.177.154.124.13
      Teddy25.5419.2823.4822.7617.5617.27
      Cones23.4017.0419.7118.8816.1316.06
      Avg15.5611.1713.4313.1010.3510.08
    • Table 5. False matching rates of different stereo matching algorithms in no-occlusion region and all regions%

      View table

      Table 5. False matching rates of different stereo matching algorithms in no-occlusion region and all regions%

      AlgorithmTsukubaVenusTeddyConesAverage
      No-occludedAllNo-occludedAllNo-occludedAllNo-occludedAll
      BPcompressed[21]2.683.631.331.898.3613.93.719.855.67
      GC-occ[5]1.192.011.642.1911.2017.405.3612.46.67
      AdaptAggrDP[22]1.573.501.532.696.7914.35.5313.26.14
      RTCensus[23]5.086.251.582.427.9613.84.109.546.34
      FastAggreg[24]1.162.114.034.759.0415.25.3712.66.78
      SemiGlob[25]3.263.961.001.576.0212.23.069.755.10
      GradAdaptWgt[26]2.262.636.991.398.0013.102.617.675.58
      Proposed algorithm2.523.230.231.055.7012.353.299.754.74
    • Table 6. False matching rate of different stereo matching algorithms in no-occluded region

      View table

      Table 6. False matching rate of different stereo matching algorithms in no-occluded region

      StereopairsFalse matching rate /%
      MCT[16]MCT'[17]MST[6]AW[13]GF[14]CT-GF[15]CT-MST[15]Proposed algorithm
      AloeArtBaby1Baby2Baby3BooksBowling1Bowling2Cloth1Cloth2Cloth3Cloth4DollsFlowerpotsLampshade1Lampshade2LaundryMidd1Midd2MoebiusMonopolyPlasticReindeerRocks19.4918.614.296.026.9912.2618.2211.151.985.794.053.5811.4314.2724.7327.6024.7748.7547.7014.1628.4944.4013.835.389.3119.213.915.986.7211.3417.2311.161.875.214.143.6412.1515.2125.4327.7725.2140.1440.0113.8627.9739.4312.445.196.6113.747.6514.129.5312.9719.1412.631.185.403.202.537.8617.2711.2914.2019.3918.9620.2111.3316.8530.3011.964.146.5012.885.4513.648.7612.6516.8710.431.255.563.813.216.4315.4412.3617.4416.8936.4735.5613.2615.4332.4411.735.437.0612.033.163.974.7110.216.218.181.884.202.792.257.129.6312.1212.4820.6436.9534.0210.6419.7427.067.843.977.0412.163.314.034.979.966.188.471.964.832.802.387.279.6710.9310.5418.5433.4532.9610.9218.9922.228.154.036.5713.867.9113.679.4712.4719.5812.581.155.363.162.407.6217.0511.3714.0817.8619.2119.3211.6616.6431.0611.923.975.9310.162.532.663.918.016.075.881.243.432.291.645.267.5310.0411.1615.5131.7631.909.5719.5025.806.892.86
      Rocks2Wood1Wood2Average4.136.494.4115.673.247.174.3714.793.3311.174.2011.525.028.996.1512.592.674.932.7110.342.744.932.959.873.9810.984.1211.451.943.722.188.67
    • Table 7. Average running time of 31 Middlebury stereo pairs with different algorithmss

      View table

      Table 7. Average running time of 31 Middlebury stereo pairs with different algorithmss

      MethodMCT[16]MCT'[17]MST[6]AW[13]GF[14]CT-GF[15]CT-MST[15]Proposed
      Averagerunning time /s3.974.351.5615.874.766.754.126.63
    Tools

    Get Citation

    Copy Citation Text

    Hairui Fan, Fan Yang, Xuran Pan, Jie Wen, Xiaoyu Wang. Stereo Matching Algorithm for Improved Census Transform and Gradient Fusion[J]. Acta Optica Sinica, 2018, 38(2): 0215006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 24, 2017

    Accepted: --

    Published Online: May. 9, 2019

    The Author Email: Fan Yang (commanderjy@163.com)

    DOI:10.3788/AOS201838.0215006

    Topics