Acta Photonica Sinica, Volume. 54, Issue 2, 0254104(2025)

Precise Beam Pointing Control Technology Based on Lithium Niobate Crystal (Invited)

Weigang ZHAO1,2, Xinrong HU2、*, Jinman GE1,2, Wenting DIAO1,2, and Ye FENG3
Author Affiliations
  • 1National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology, Xi'an 710100, China
  • 2China Academy of Space Technology, Xi'an 710100, China
  • 3Xi'an Institute of Optics and Precision Mechanics, Xi'an 710119, China
  • show less
    References(24)

    [1] LUO Jun, CHEN Lisheng, DUAN Huizong et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 33, 035010-035019(2016).

    [2] ANDERSON G, ANDERSON J, ANDERSON M et al. Experimental results from the ST7 mission on LISA Pathfinder[J]. Physical Review D, 98, 102005-102022(2018).

    [3] PATHFINDER C L. LISA Pathfinder closed-loop analysis: a model breakdown of the in-loop observables[J]. Journal of Physics: Conference Series, 840, 012038-012036(2017).

    [4] BORN M. Collaboration on behalf of the LISA Pathfinder: OPD loop characterisation[J]. Journal of Physics: Conference Series, 840, 012036(2017).

    [5] CAO Bin, JIA Fuling, YANG Minglin et al. Suppression of frequency-mixing effect for pm-level heterodyne interferometers based on “zero coupling” optical path length control[J]. Optics Letter, 49, 3300-3303(2024).

    [6] ZHU Weizhou, XIE Yong, JIA Jianjun et al. Development and test of the Point Ahead Angle Mechanism for space gravitational wave detection[J]. Infrared and Laser Engineering, 53, 1-8(2023).

    [7] GAO Hongrui, LIU Heshan, LUO Ziren et al. Introduction of laser pointing scheme in the Taiji program[J]. Chinese Optics, 12, 425-431(2019).

    [8] FAN Dapeng, ZHOU Yuan, LU Yafei et al. Overview of beam steering technology based on rotational double prisms[J]. Chinese Optics, 6, 136-150(2013).

    [9] REN Xingfei, FAN Jinwei, PAN Ri et al. Beam pointing deviation correction system based on fast steering mirrors[J]. Chinese Journal of Lasers, 50, 158-167(2023).

    [10] ROMER G, BECHTOLD P. Electro-optic and acousto-optic laser beam scanners[J]. Physics Procedia, 56, 29-39(2014).

    [11] BOSCO A, BOOGERT S, BOORMAN G et al. A large aperture electro-optic deflector[J]. Applied Physics Letters, 94, 211104(2009).

    [12] SCRYMGEOUR D, ALOK S, VENKAREAMAN G et al. Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics[J]. Applied Physics Letters, 81, 3140-3142(2002).

    [13] WANG Yuan, ZHOU Suxu, HE Donghui et al. Electro-optic beam deflection based on a lithium niobate waveguide with microstructured serrated electrodes[J]. Optic Letter, 41, 4739-4742(2016).

    [14] HAN Wenbin, SUN Dehui, WANG Meng et al. High⁃Energy, Strong⁃Field terahertz source and lithium niobate crystal[J]. Chinese Journal of Lasers, 50, 1714003(2023).

    [15] SUN Jun, HAO Yongxin, ZHANG Ling et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 49, 947-964(2020).

    [16] SCRYMGOUR D, YANIV B, VENKATRAMAN G et al. Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning[J]. Applied Optics, 40, 6236-6241(2001).

    [17] LIU Bing, WANG Xuping, YANG Guoyu et al. Principles devices and applications of beam deflection based on quadratic electro-optic effect of potassium tantalate niobate[J]. Laser & Optoelectronics Progress, 57, 071609(2020).

    [18] ZONG Jiguo, XU Guanfeng, LV Yucai et al. Growth, Polarization and optical quality of magnesium-doped niobium acid lutetium crystal[J]. Laser Technology, 6-11(1983).

    [19] ČTYROKY J, JIRI P, VLADIMIR K et al. Bound modes in the continuum in integrated photonic LiNbO3 waveguides: are they always beneficial?[J]. Optics Express, 31, 44-55(2023).

    [20] LIANG Hanxue, JIANG Wei, SUN Xicheng et al. Themo-optic oscillation dynamics in a high-Q lithium niobate microresonator[C], F 5-10.

    [21] PRENCIPE A, KATIA G. Electro-and thermo-optics response of x-cut thin film LiNbO3 waveguides[J]. IEEE Journal of Quantum Electronics, 59, 1-8(2023).

    [22] HULME K, DAVIES P, COUND V. The signs of the electro-optic coefficients for lithium tantalate[J]. Journal of Physics C: Solid State Physics, 2, 855-857(1969).

    [23] KAZUYA Y, JIN L, TAKIZAWA K. Measurement of dispersion of effective electro-optic coefficients r13E and r33E of non-doped congruent LiNbO3 crystal[J]. Japanese Journal of Applied Physics, 47, 5503-008(2008).

    [24] SHI Dele, XU Hongyan, HUANG Xiujun et al. Laser wireless high-power and high-speed information simultaneous transfer technology[J]. Space Electronic Technology, 21, 40-47(2024).

    Tools

    Get Citation

    Copy Citation Text

    Weigang ZHAO, Xinrong HU, Jinman GE, Wenting DIAO, Ye FENG. Precise Beam Pointing Control Technology Based on Lithium Niobate Crystal (Invited)[J]. Acta Photonica Sinica, 2025, 54(2): 0254104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Precise Beam Pointing for Space Gravitational Wave Detection

    Received: Dec. 30, 2024

    Accepted: Feb. 12, 2025

    Published Online: Mar. 25, 2025

    The Author Email: Xinrong HU (huxr062768@126.com)

    DOI:10.3788/gzxb20255402.0254104

    Topics