High Power Laser and Particle Beams, Volume. 34, Issue 5, 054001(2022)

Research advances in ultrafast X-ray free-electron lasers

Haoyan Jia1,2, Senlin Huang1,2、*, Yi Jiao3, Jingyi Li3, Kexin Liu1,2, Shuai Liu1,2, Weihang Liu3, Zhongqi Liu1,2, Tianyun Long1,2,4, Weilun Qin4, and Sheng Zhao1,2
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
  • 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 4Deutsches Elektronen-Synchrotron (DESY), Hamburg 22603, Germany
  • show less
    Figures & Tables(14)
    Working principle of a free-electron laser
    Schematic diagram of energy modulation scheme
    Schematic diagram of current modulation scheme
    Schematic illustration of the ESASE experiment at LCLS[47]
    Schematic diagram of slotted foil scheme
    Fresh-slice technique based on the transverse wakefields of a dechirper[68]
    Schematic illustration of nonlinear bunch compression at LCLS[78]
    Schematic diagram of the mode-locked FEL scheme proposed by Thompson et al.[80]
    Schematic diagram of the mode-locked FEL scheme proposed by Dunning et al.[81]
    Schematic diagram of attosecond soft X-ray cascade amplification scheme[87]
    Schematic diagram of chirped microbunching scheme[88]
    Comparison of various ultrafast XFEL pulse generation schemes. The blue markers represent hard X-ray generation schemes and magenta markers represent soft X-ray generation schemes. The orange filled markers indicate the schemes have been validated on FEL facilities. The shaded blue area indicates the parameter space that can be achieved currently
    • Table 1. Main parameters of the schemes presented in Fig.12

      View table
      View in Article

      Table 1. Main parameters of the schemes presented in Fig.12

      schemepulse duration (FWHM)/aspulse peak power/GWwavelength/photon energyreference
      energy modulation1000.0051 nm[29]
      30010.1 nm[28]
      3001000.15 nm[30]
      2001000.15 nm[31]
      400100900 eV/ 1100 eV[40]
      4001 0001.22 nm/ 2.48 nm[33]
      current modulation250400.15 nm[42]
      1002.30.15 nm[43]
      146580.1 nm[45]
      210250.15 nm[46]
      280100905 eV[47]
      250120940 eV[50]
      1 00039560 eV[51]
      emittance spoiling2 000108 keV[52]
      3 8002.51.1 nm[55]
      420305.6 keV[56]
      10 000301.5 keV[59]
      orbit control29 000120.15 nm[60]
      1151000.15 nm[61]
      5 000140670 eV[68]
      low charge bunch compression300100.15 nm[72]
      2 000201.5 nm[73]
      2 600101 keV[74]
      140350.15 nm[77]
      200505.6 keV[78]
      3264.37.36 keV[79]
      mode-locked FEL2360.15 nm[80]
      1.51.50.1 nm[81]
      cascade amplification2281 0000.1 nm[82]
      5001 0000.1 nm[83]
      536 60010 keV[84]
      1003000.1 nm[85]
      801 7000.15 nm[86]
      2605501.5 nm[87]
      chirped microbunching461.28.6 nm[88]
    • Table 2. A summary of various ultrafast XFEL pulse generation schemes

      View table
      View in Article

      Table 2. A summary of various ultrafast XFEL pulse generation schemes

      schemespectral range isolated pulse/ pulse train synchronization to optical laser high repetition frequency (MHz) hardware requirements and feasibility
      energy modulationall (soft X-ray to hard X-ray)isolated/trainyesno (self-modulation method-yes)high power external laser, need to add modulators
      current modulationallisolated/trainyesno (self-modulation method-yes)high power external laser, need to add modulators
      emittance spoiling slotted foilallisolatednononon-invasive hardware, can be used at any facilities
      optical shapingyesyesno additional hardware, can be used at any facilities
      orbit controlRF deflectorallisolatednoyesno additional hardware, can be used at any facilities
      laser modulationyesnohigh power external laser, need to add modulators
      transverse wakefieldnoyesadd dechirper before the undulator
      dispersion basednoyesno additional hardware, can be used at any facilities
      low charge bunch compressionallisolatednoyesno additional hardware, can be used at any facilities
      cascade amplification (based on slotted foil, orbit control, ESASE, the specific attributes are the same as above) allisolated/train————add chicane between undulators, need a dedicated line
      mode-locked FELalltrainyesnohigh power external laser and chicanes, need a dedicated line
      chirped microbunchingsoft X-rayisolatedyes——seed laser and modulators,need a dedicated line
    Tools

    Get Citation

    Copy Citation Text

    Haoyan Jia, Senlin Huang, Yi Jiao, Jingyi Li, Kexin Liu, Shuai Liu, Weihang Liu, Zhongqi Liu, Tianyun Long, Weilun Qin, Sheng Zhao. Research advances in ultrafast X-ray free-electron lasers[J]. High Power Laser and Particle Beams, 2022, 34(5): 054001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Particle Beams and Accelerator Technology?Overview

    Received: Feb. 25, 2022

    Accepted: --

    Published Online: Jun. 2, 2022

    The Author Email: Senlin Huang (huangsl@pku.edu.cn)

    DOI:10.11884/HPLPB202234.220056

    Topics